Suppr超能文献

5’-甲基硫代腺苷核苷酶在弯曲杆菌属空肠菌中参与甲萘醌生物合成的一种修饰呋咱核苷酸途径中发挥关键作用。

5'-methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni.

机构信息

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

J Biol Chem. 2011 Jun 3;286(22):19392-8. doi: 10.1074/jbc.M111.229781. Epub 2011 Apr 13.

Abstract

Menaquinone (vitamin K(2)) serves as an electron carrier in the electron transport chain required for respiration in many pathogenic bacteria. Most bacteria utilize a common menaquinone biosynthetic pathway as exemplified by Escherichia coli. Recently, a novel biosynthetic pathway, the futalosine pathway, was discovered in Streptomyces. Bioinformatic analysis strongly suggests that this pathway is also operative in the human pathogens Campylobacter jejuni and Helicobacter pylori. Here, we provide compelling evidence that a modified futalosine pathway is operative in C. jejuni and that it utilizes 6-amino-6-deoxyfutalosine instead of futalosine. A key step in the Streptomyces pathway involves a nucleosidase called futalosine hydrolase. The closest homolog in C. jejuni has been annotated as a 5'-methylthioadenosine nucleosidase (MTAN). We have shown that this C. jejuni enzyme has MTAN activity but negligible futalosine hydrolase activity. However, the C. jejuni MTAN is able to hydrolyze 6-amino-6-deoxyfutalosine at a rate comparable with that of its known substrates. This suggests that the adenine-containing version of futalosine is the true biosynthetic intermediate in this organism. To demonstrate this in vivo, we constructed a C. jejuni mutant strain deleted for mqnA2, which is predicted to encode for the enzyme required to synthesize 6-amino-6-deoxyfutalosine. Growth of this mutant was readily rescued by the addition of 6-amino-6-deoxyfutalosine, but not futalosine. This provides the first direct evidence that a modified futalosine pathway is operative in C. jejuni. It also highlights the tremendous versatility of the C. jejuni MTAN, which plays key roles in S-adenosylmethionine recycling, the biosynthesis of autoinducer molecules, and the biosynthesis of menaquinone.

摘要

甲萘醌(维生素 K(2))作为电子载体在许多病原细菌的呼吸电子传递链中发挥作用。大多数细菌利用一种常见的甲萘醌生物合成途径,以大肠杆菌为例。最近,在链霉菌中发现了一种新的生物合成途径,即 futalosine 途径。生物信息学分析强烈表明,该途径也存在于人类病原体空肠弯曲菌和幽门螺杆菌中。在这里,我们提供了令人信服的证据表明,一种改良的 futalosine 途径在空肠弯曲菌中起作用,并且它利用 6-氨基-6-脱氧 futalosine 而不是 futalosine。该途径的一个关键步骤涉及一种称为 futalosine 水解酶的核酶。在空肠弯曲菌中最接近的同源物被注释为 5'-甲基硫代腺苷核酶(MTAN)。我们已经表明,这种空肠弯曲菌酶具有 MTAN 活性,但 futalosine 水解酶活性可忽略不计。然而,空肠弯曲菌 MTAN 能够以与已知底物相当的速率水解 6-氨基-6-脱氧 futalosine。这表明腺嘌呤含量的 futalosine 是该生物体内真正的生物合成中间体。为了在体内证明这一点,我们构建了一个空肠弯曲菌突变菌株,该菌株缺失 mqnA2,该基因预测编码合成 6-氨基-6-脱氧 futalosine 的酶。该突变体的生长很容易通过添加 6-氨基-6-脱氧 futalosine 而不是 futalosine 得到挽救。这首次直接证明了改良的 futalosine 途径在空肠弯曲菌中起作用。它还突出了空肠弯曲菌 MTAN 的巨大多功能性,该酶在 S-腺苷甲硫氨酸循环、自动诱导分子生物合成和甲萘醌生物合成中发挥关键作用。

相似文献

7
Aminofutalosine Deaminase in the Menaquinone Pathway of .类氨基蝶呤脱氨酶在menaquinone 途径中的作用。
Biochemistry. 2021 Jun 22;60(24):1933-1946. doi: 10.1021/acs.biochem.1c00215. Epub 2021 Jun 2.
9
Diversity of the early step of the futalosine pathway.呋咱并呋喃酮途径早期步骤的多样性。
Antimicrob Agents Chemother. 2011 Feb;55(2):913-6. doi: 10.1128/AAC.01362-10. Epub 2010 Nov 22.
10

引用本文的文献

1
Residence Times for Femtomolar and Picomolar Inhibitors of MTANs.MTANs 的皮摩尔和飞摩尔级抑制剂的停留时间。
Biochemistry. 2023 Jun 6;62(11):1776-1785. doi: 10.1021/acs.biochem.3c00145. Epub 2023 May 19.
3
Aminofutalosine Deaminase in the Menaquinone Pathway of .类氨基蝶呤脱氨酶在menaquinone 途径中的作用。
Biochemistry. 2021 Jun 22;60(24):1933-1946. doi: 10.1021/acs.biochem.1c00215. Epub 2021 Jun 2.
10
Enzymatic Transition States and Drug Design.酶过渡态与药物设计。
Chem Rev. 2018 Nov 28;118(22):11194-11258. doi: 10.1021/acs.chemrev.8b00369. Epub 2018 Oct 18.

本文引用的文献

1
Diversity of the early step of the futalosine pathway.呋咱并呋喃酮途径早期步骤的多样性。
Antimicrob Agents Chemother. 2011 Feb;55(2):913-6. doi: 10.1128/AAC.01362-10. Epub 2010 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验