Suppr超能文献

预告:对NGS数据的读段映射结果进行个性化基准测试和优化

Teaser: Individualized benchmarking and optimization of read mapping results for NGS data.

作者信息

Smolka Moritz, Rescheneder Philipp, Schatz Michael C, von Haeseler Arndt, Sedlazeck Fritz J

机构信息

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria.

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

出版信息

Genome Biol. 2015 Oct 22;16:235. doi: 10.1186/s13059-015-0803-1.

Abstract

Mapping reads to a genome remains challenging, especially for non-model organisms with lower quality assemblies, or for organisms with higher mutation rates. While most research has focused on speeding up the mapping process, little attention has been paid to optimize the choice of mapper and parameters for a user's dataset. Here, we present Teaser, a software that assists in these choices through rapid automated benchmarking of different mappers and parameter settings for individualized data. Within minutes, Teaser completes a quantitative evaluation of an ensemble of mapping algorithms and parameters. We use Teaser to demonstrate how Bowtie2 can be optimized for different data.

摘要

将 reads 映射到基因组仍然具有挑战性,特别是对于那些组装质量较低的非模式生物,或者对于具有较高突变率的生物。虽然大多数研究都集中在加快映射过程上,但很少有人关注为用户数据集优化映射器和参数的选择。在这里,我们展示了 Teaser,这是一款通过对不同映射器和个性化数据的参数设置进行快速自动基准测试来协助这些选择的软件。在几分钟内,Teaser 就能完成对一组映射算法和参数的定量评估。我们使用 Teaser 来展示如何针对不同数据优化 Bowtie2。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93f3/4618857/1517f15823c3/13059_2015_803_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验