Peng Jeffrey W
Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556.
Biophys Rev. 2015 Jun 1;7(2):239-249. doi: 10.1007/s12551-015-0171-9. Epub 2015 Apr 22.
Signaling proteins often sequester complementary functional sites in separate domains. How do the different domains communicate with one another? An attractive system to address this question is the mitotic regulator, human Pin1 (Lu et al. 1996). Pin-1 consists of two tethered domains: a WW domain for substrate binding, and a catalytic domain for peptidyl-prolyl isomerase (PPIase) activity. Pin1 accelerates the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs within proteins regulating the cell cycle and neuronal development. The early x-ray (Ranganathan et al. 1997; Verdecia et al. 2000) and solution NMR studies (Bayer et al. 2003; Jacobs et al. 2003) of Pin1 indicated inter- and intradomain motion. We became interested in exploring how such motions might affect interdomain communication, using NMR. Our accumulated results indicate substrate binding to Pin1 WW domain changes the intra/inter domain mobility, thereby altering substrate activity in the distal PPIase domain catalytic site. Thus, Pin1 shows evidence of dynamic allostery, in the sense of Cooper and Dryden (Cooper and Dryden 1984). We highlight our results supporting this conclusion, and summarize them via a simple speculative model of conformational selection.
信号蛋白通常在不同结构域中隔离互补的功能位点。不同结构域之间是如何相互通信的呢?解决这个问题的一个引人注目的系统是有丝分裂调节因子人源Pin1(Lu等人,1996年)。Pin1由两个相连的结构域组成:一个用于底物结合的WW结构域和一个具有肽基脯氨酰异构酶(PPIase)活性的催化结构域。Pin1加速调节细胞周期和神经元发育的蛋白质中磷酸化丝氨酸/苏氨酸 - 脯氨酸(pS/T - P)基序的顺反异构化。早期对Pin1的X射线研究(Ranganathan等人,1997年;Verdecia等人,2000年)和溶液核磁共振研究(Bayer等人,2003年;Jacobs等人,2003年)表明了结构域间和结构域内的运动。我们开始对利用核磁共振探索这种运动如何影响结构域间通信感兴趣。我们积累的结果表明,底物与Pin1的WW结构域结合会改变结构域内/结构域间的流动性,从而改变远端PPIase结构域催化位点的底物活性。因此,从库珀和德莱登(Cooper和Dryden,1984年)的意义上来说,Pin1显示出动态变构的证据。我们强调支持这一结论的结果,并通过一个简单的构象选择推测模型对其进行总结。