Suppr超能文献

节律性抑制使神经网络能够搜索最大程度一致的状态。

Rhythmic Inhibition Allows Neural Networks to Search for Maximally Consistent States.

作者信息

Mostafa Hesham, Müller Lorenz K, Indiveri Giacomo

机构信息

Institute of Neuroinformatics, University of Zurich, and ETH Zurich, Zurich CH-8057, Switzerland

出版信息

Neural Comput. 2015 Dec;27(12):2510-47. doi: 10.1162/NECO_a_00785. Epub 2015 Oct 23.

Abstract

Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.

摘要

γ波段节律性抑制是神经回路中普遍存在的现象,但其计算作用仍不清楚。我们表明,γ波段节律性抑制模型使耦合皮质回路基序网络能够搜索网络配置,以最佳地协调外部输入与网络连接中编码的内部一致性模型。我们表明,赫布可塑性使网络能够通过示例学习一致性模型。由节律性抑制驱动的搜索动力学使所述网络能够解决困难的约束满足问题,而无需对网络中的随机波动形式做出假设。我们表明,搜索动力学可以通过随机采样过程很好地近似。我们使用所述网络来重现感知多稳态现象,其切换时间与实验数据非常匹配,并表明它们提供了一个通用的神经框架,可用于对其他感知推理现象进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验