Suppr超能文献

用于类脑计算的高度可重现且与CMOS兼容的基于VO的振荡器。

Highly reproducible and CMOS-compatible VO-based oscillators for brain-inspired computing.

作者信息

Maher Olivier, Bernini Roy, Harnack Nele, Gotsmann Bernd, Sousa Marilyne, Bragaglia Valeria, Karg Siegfried

机构信息

IBM Research Europe - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Zürich, Switzerland.

Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.

出版信息

Sci Rep. 2024 May 21;14(1):11600. doi: 10.1038/s41598-024-61294-x.

Abstract

With remarkable electrical and optical switching properties induced at low power and near room temperature (68 °C), vanadium dioxide (VO) has sparked rising interest in unconventional computing among the phase-change materials research community. The scalability and the potential to compute beyond the von Neumann model make VO especially appealing for implementation in oscillating neural networks for artificial intelligence applications, to solve constraint satisfaction problems, and for pattern recognition. Its integration into large networks of oscillators on a Silicon platform still poses challenges associated with the stabilization in the correct oxidation state and the ability to fabricate a structure with predictable electrical behavior showing very low variability. In this work, the role played by the different annealing parameters applied by three methods (slow thermal annealing, flash annealing, and rapid thermal annealing), following the vanadium oxide atomic layer deposition, on the formation of VO grains is studied and an optimal substrate stack configuration that minimizes variability between devices is proposed. Material and electrical characterizations are performed on the different films and a step-by-step recipe to build reproducible VO-based oscillators is presented, which is argued to be made possible thanks to the introduction of a hafnium oxide (HfO) layer between the silicon substrate and the vanadium oxide layer. Up to seven nearly identical VO-based devices are contacted simultaneously to create a network of oscillators, paving the way for large-scale implementation of VO oscillating neural networks.

摘要

二氧化钒(VO)在低功率和近室温(68°C)下具有显著的电学和光学开关特性,这在相变材料研究领域引发了人们对非传统计算的浓厚兴趣。VO的可扩展性以及超越冯·诺依曼模型进行计算的潜力,使其在用于人工智能应用的振荡神经网络中实现、解决约束满足问题以及进行模式识别方面格外具有吸引力。然而,将其集成到硅平台上的大型振荡器网络中仍面临挑战,这些挑战涉及到在正确氧化态下的稳定性以及制造具有可预测电学行为且变化极小的结构的能力。在这项工作中,研究了在氧化钒原子层沉积之后通过三种方法(慢速热退火、快速热退火和闪速退火)应用不同退火参数对VO晶粒形成所起的作用,并提出了一种能使器件间变化最小化的最佳衬底堆叠配置。对不同薄膜进行了材料和电学表征,并给出了构建可重复的基于VO的振荡器的分步方法,据称由于在硅衬底和氧化钒层之间引入了氧化铪(HfO)层才使得这一切成为可能。同时连接多达七个几乎相同的基于VO的器件以创建一个振荡器网络,为VO振荡神经网络的大规模实现铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acee/11109144/cff52dfeab06/41598_2024_61294_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验