Suppr超能文献

使用基于反应性的化学蛋白质组学平台绘制环境化学物质的全蛋白质组靶点

Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.

作者信息

Medina-Cleghorn Daniel, Bateman Leslie A, Ford Breanna, Heslin Ann, Fisher Karl J, Dalvie Esha D, Nomura Daniel K

机构信息

Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.

Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.

Abstract

We are exposed to a growing number of chemicals in our environment, most of which have not been characterized in terms of their toxicological potential or mechanisms. Here, we employ a chemoproteomic platform to map the cysteine reactivity of environmental chemicals using reactivity-based probes to mine for hyper-reactive hotspots across the proteome. We show that environmental contaminants such as monomethylarsonous acid and widely used pesticides such as chlorothalonil and chloropicrin possess common reactivity with a distinct set of proteins. Many of these proteins are involved in key metabolic processes, suggesting that these targets may be particularly sensitive to environmental electrophiles. We show that the widely used fungicide chlorothalonil specifically inhibits several metabolic enzymes involved in fatty acid metabolism and energetics, leading to dysregulated lipid metabolism in mice. Our results underscore the utility of using reactivity-based chemoproteomic platforms to uncover novel mechanistic insights into the toxicity of environmental chemicals.

摘要

我们在环境中接触到越来越多的化学物质,其中大多数在毒理学潜力或机制方面尚未得到表征。在这里,我们采用一种化学蛋白质组学平台,使用基于反应性的探针来绘制环境化学物质的半胱氨酸反应性,以在整个蛋白质组中挖掘高反应性热点。我们表明,诸如一甲基胂酸之类的环境污染物以及诸如百菌清和氯化苦之类广泛使用的农药与一组独特的蛋白质具有共同的反应性。这些蛋白质中的许多都参与关键的代谢过程,这表明这些靶点可能对环境亲电试剂特别敏感。我们表明,广泛使用的杀菌剂百菌清特异性抑制参与脂肪酸代谢和能量代谢的几种代谢酶,导致小鼠脂质代谢失调。我们的结果强调了使用基于反应性的化学蛋白质组学平台来揭示环境化学物质毒性新机制见解的实用性。

相似文献

1
Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.
2
Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.
Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30.
3
Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.
ACS Chem Biol. 2017 Mar 17;12(3):635-642. doi: 10.1021/acschembio.6b01001. Epub 2017 Jan 20.
4
Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides.
ACS Chem Biol. 2014 Feb 21;9(2):423-32. doi: 10.1021/cb400796c. Epub 2013 Nov 20.
5
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
6
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13.
7
Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets.
Toxicology. 2011 Mar 28;282(1-2):1-15. doi: 10.1016/j.tox.2010.12.010. Epub 2011 Jan 18.
8
PestScreen: a screening approach for scoring and ranking pesticides by their environmental and toxicological concern.
Environ Int. 2007 Oct;33(7):886-93. doi: 10.1016/j.envint.2007.04.005. Epub 2007 May 16.
9
Ecotoxicity testing of chemicals with particular reference to pesticides.
Pest Manag Sci. 2006 Jul;62(7):571-83. doi: 10.1002/ps.1218.
10
Ecotoxicology, ecophysiology, and mechanistic studies with rotifers.
Aquat Toxicol. 2011 Jan 17;101(1):1-12. doi: 10.1016/j.aquatox.2010.09.006. Epub 2010 Oct 18.

引用本文的文献

1
Photo-induced defluorination acyl fluoride exchange as a fluorogenic photo-click reaction for photo-affinity labeling.
Chem Sci. 2023 Feb 24;14(13):3630-3641. doi: 10.1039/d2sc04636a. eCollection 2023 Mar 29.
3
A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
Nat Protoc. 2020 Sep;15(9):2891-2919. doi: 10.1038/s41596-020-0352-2. Epub 2020 Jul 20.
4
Covalent targeting of the vacuolar H-ATPase activates autophagy via mTORC1 inhibition.
Nat Chem Biol. 2019 Aug;15(8):776-785. doi: 10.1038/s41589-019-0308-4. Epub 2019 Jul 8.
5
6
Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications.
ACS Chem Biol. 2019 Nov 15;14(11):2430-2440. doi: 10.1021/acschembio.8b01083. Epub 2019 May 13.
7
Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2311-2316. doi: 10.1073/pnas.1715821115. Epub 2018 Feb 20.
8
Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.
Cell Chem Biol. 2017 Nov 16;24(11):1368-1376.e4. doi: 10.1016/j.chembiol.2017.08.013. Epub 2017 Sep 14.
9
Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes.
Mol Cell Proteomics. 2017 Oct;16(10):1815-1828. doi: 10.1074/mcp.RA117.000108. Epub 2017 Aug 21.
10
Quantitative Chemical Proteomic Profiling of the in Vivo Targets of Reactive Drug Metabolites.
ACS Chem Biol. 2017 Aug 18;12(8):2040-2050. doi: 10.1021/acschembio.7b00346. Epub 2017 Jun 21.

本文引用的文献

1
Covalent protein modification: the current landscape of residue-specific electrophiles.
Curr Opin Chem Biol. 2015 Feb;24:18-26. doi: 10.1016/j.cbpa.2014.10.021. Epub 2014 Nov 11.
2
The basics of thiols and cysteines in redox biology and chemistry.
Free Radic Biol Med. 2015 Mar;80:148-57. doi: 10.1016/j.freeradbiomed.2014.11.013. Epub 2014 Nov 27.
3
Having a direct look: analysis of DNA damage and repair mechanisms by next generation sequencing.
Exp Cell Res. 2014 Nov 15;329(1):35-41. doi: 10.1016/j.yexcr.2014.08.011. Epub 2014 Aug 15.
4
Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia.
ACS Chem Biol. 2014 May 16;9(5):1097-103. doi: 10.1021/cb500014r. Epub 2014 Mar 10.
5
Alkylation damage by lipid electrophiles targets functional protein systems.
Mol Cell Proteomics. 2014 Mar;13(3):849-59. doi: 10.1074/mcp.M113.032953. Epub 2014 Jan 15.
6
A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles.
Nat Methods. 2014 Jan;11(1):79-85. doi: 10.1038/nmeth.2759. Epub 2013 Dec 1.
7
Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides.
ACS Chem Biol. 2014 Feb 21;9(2):423-32. doi: 10.1021/cb400796c. Epub 2013 Nov 20.
8
Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14912-7. doi: 10.1073/pnas.1310894110. Epub 2013 Aug 26.
9
Diverse functional roles of reactive cysteines.
ACS Chem Biol. 2013 Feb 15;8(2):283-96. doi: 10.1021/cb3005269. Epub 2012 Nov 29.
10
Basic biology of GAPDH.
Adv Exp Med Biol. 2013;985:1-36. doi: 10.1007/978-94-007-4716-6_1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验