Suppr超能文献

相似文献

1
Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.
Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30.
2
Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.
3
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
4
Uncovering Drug Mechanism of Action by Proteome Wide- Identification of Drug-Binding Proteins.
Med Chem. 2017;13(6):526-535. doi: 10.2174/1573406413666170518154724.
5
Chemoproteomic-enabled phenotypic screening.
Cell Chem Biol. 2021 Mar 18;28(3):371-393. doi: 10.1016/j.chembiol.2021.01.012. Epub 2021 Feb 11.
6
Mass spectrometry-based chemoproteomic approaches.
Methods Mol Biol. 2012;803:3-13. doi: 10.1007/978-1-61779-364-6_1.
7
Methods for the elucidation of protein-small molecule interactions.
Chem Biol. 2013 May 23;20(5):667-73. doi: 10.1016/j.chembiol.2013.04.008.
8
Chemoproteomic profiling of protein modifications by lipid-derived electrophiles.
Curr Opin Chem Biol. 2016 Feb;30:37-45. doi: 10.1016/j.cbpa.2015.10.029. Epub 2015 Nov 25.
9
Chemoproteomic profiling of protein-metabolite interactions.
Curr Opin Chem Biol. 2020 Feb;54:28-36. doi: 10.1016/j.cbpa.2019.11.003. Epub 2019 Dec 5.
10
Probing small molecule-protein interactions: A new perspective for functional proteomics.
J Proteomics. 2011 Dec 10;75(1):100-15. doi: 10.1016/j.jprot.2011.07.017. Epub 2011 Jul 30.

引用本文的文献

1
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
2
Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.
Oncogene. 2025 Apr;44(15):1037-1050. doi: 10.1038/s41388-025-03277-4. Epub 2025 Jan 25.
3
Decreasing the intrinsically disordered protein α-synuclein levels by targeting its structured mRNA with a ribonuclease-targeting chimera.
Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2306682120. doi: 10.1073/pnas.2306682120. Epub 2024 Jan 5.
4
Technologies for Direct Detection of Covalent Protein-Drug Adducts.
Pharmaceuticals (Basel). 2023 Apr 5;16(4):547. doi: 10.3390/ph16040547.
6
Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine.
ACS Chem Biol. 2021 Nov 19;16(11):2581-2594. doi: 10.1021/acschembio.1c00629. Epub 2021 Nov 2.
7
Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells.
ACS Chem Biol. 2020 Sep 18;15(9):2324-2330. doi: 10.1021/acschembio.0c00432. Epub 2020 Sep 10.
8
The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them.
Cancer Epidemiol Biomarkers Prev. 2020 Oct;29(10):1887-1903. doi: 10.1158/1055-9965.EPI-19-1346. Epub 2020 Mar 9.
9
Targeted and proteome-wide analysis of metabolite-protein interactions.
Curr Opin Chem Biol. 2020 Feb;54:19-27. doi: 10.1016/j.cbpa.2019.10.008. Epub 2019 Nov 29.
10
Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond.
Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13734-13762. doi: 10.1002/anie.201909690. Epub 2020 Apr 23.

本文引用的文献

1
Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
Chem Biol. 2015 Oct 22;22(10):1394-405. doi: 10.1016/j.chembiol.2015.09.008.
2
Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10852-7. doi: 10.1002/anie.201505641. Epub 2015 Jul 24.
3
Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival.
ACS Chem Biol. 2015 Apr 17;10(4):925-32. doi: 10.1021/cb500893q. Epub 2015 Jan 20.
4
Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay.
Nat Chem Biol. 2015 Feb;11(2):164-71. doi: 10.1038/nchembio.1721. Epub 2015 Jan 12.
5
The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14924-9. doi: 10.1073/pnas.1413706111. Epub 2014 Sep 29.
6
Exploring metabolic pathways and regulation through functional chemoproteomic and metabolomic platforms.
Chem Biol. 2014 Sep 18;21(9):1171-84. doi: 10.1016/j.chembiol.2014.07.007.
7
A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors.
Nat Chem Biol. 2014 Sep;10(9):760-767. doi: 10.1038/nchembio.1582. Epub 2014 Jul 13.
8
Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia.
ACS Chem Biol. 2014 May 16;9(5):1097-103. doi: 10.1021/cb500014r. Epub 2014 Mar 10.
9
In situ proteome profiling of C75, a covalent bioactive compound with potential anticancer activities.
Org Lett. 2014 Mar 7;16(5):1414-7. doi: 10.1021/ol500206w. Epub 2014 Feb 19.
10
Alkylation damage by lipid electrophiles targets functional protein systems.
Mol Cell Proteomics. 2014 Mar;13(3):849-59. doi: 10.1074/mcp.M113.032953. Epub 2014 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验