Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, USA.
Phys Chem Chem Phys. 2015 Nov 28;17(44):30013-22. doi: 10.1039/c5cp04512f. Epub 2015 Oct 26.
Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.
等离子体学可以通过光捕获、热电子转移和等离子体诱导共振能量转移(PIRET)来增强半导体中的太阳能转换。等离子体的多方面响应和与半导体的多种相互作用途径使得优化具有挑战性,阻碍了高效等离子体结构的设计。因此,在本文中,我们使用密度矩阵模型来捕捉通过等离子体退相的散射、热电子和偶极-偶极耦合之间的相互作用,包括在等离子体时间尺度上相互作用所需的相干和非相干动力学。该模型扩展到光伏和太阳能到化学转换的肖克利-奎塞尔极限计算,根据等离子体能量、半导体能量和等离子体退相揭示每种增强机制的最佳应用。研究结果指导了等离子体太阳能收集的应用,展示了哪种增强机制最适合给定半导体的弱点,以及哪种纳米结构可以实现最大的增强。