World Class University Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742 (Republic of Korea) http://empl.snu.ac.kr.
Angew Chem Int Ed Engl. 2014 Oct 13;53(42):11203-7. doi: 10.1002/anie.201405598. Epub 2014 Aug 28.
Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.
通过在半导体中利用等离子体纳米结构,太阳能转换得到了显著的提高。然而,由于等离子体诱导的热电子的超快衰减,目前利用等离子体纳米结构的发电效率仍然有些低。现在表明,通过与 CdS 量子点的强耦合以及与钙钛矿 SrTiO3 纳米颗粒的肖特基结,Au 纳米颗粒中热电子的超快衰减可以显著降低。所设计的具有三个不同组件的等离子体纳米结构能够实现热电子辅助的能量级联,电子转移为 CdS→Au→SrTiO3,这通过稳态和时间分辨光致发光光谱得到了证明。因此,热电子转移能够有效地从水中产生 H2,并在各种波长的可见光照射下进行显著的电子收集。这些发现为克服通常与等离子体纳米结构相关的低效率提供了一种新方法。