Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, USA.
Nanoscale. 2018 Feb 8;10(6):2679-2696. doi: 10.1039/c7nr08487k.
The incorporation of plasmonic metals into semiconductors is a promising route to improve the performance of photocatalysts and photoelectrochemical cells. This article summarizes the three major mechanisms of plasmonic energy transfer from a metal to a semiconductor, including light scattering/trapping, plasmon-induced resonance energy transfer (PIRET) and hot electron injection (also called direct electron transfer (DET)). It also discusses the rational design of plasmonic metal-semiconductor heterojunctions based on the underlying plasmonic energy transfer mechanisms. Moreover, this article highlights the applications of plasmonic photocatalysts and photoelectrochemical cells in solar water splitting, carbon dioxide reduction and environmental pollutant decomposition.
将等离子体金属纳入半导体是提高光催化剂和光电化学电池性能的一种很有前途的途径。本文总结了等离子体能量从金属到半导体转移的三种主要机制,包括光散射/捕获、等离子体诱导共振能量转移 (PIRET) 和热电子注入(也称为直接电子转移 (DET))。它还讨论了基于潜在等离子体能量转移机制的等离子体金属-半导体异质结的合理设计。此外,本文还强调了等离子体光催化剂和光电化学电池在太阳能分解水、二氧化碳还原和环境污染物分解中的应用。