Kruse Shane E, Karunadharma Pabalu P, Basisty Nathan, Johnson Richard, Beyer Richard P, MacCoss Michael J, Rabinovitch Peter S, Marcinek David J
Department of Radiology, University of Washington, Seattle, WA, USA.
Department of Pathology, University of Washington, Seattle, WA, USA.
Aging Cell. 2016 Feb;15(1):89-99. doi: 10.1111/acel.12412. Epub 2015 Oct 25.
Changes in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) from young and aged mice. We found that mitochondrial proteins were longer lived in EDL than SOL at both ages. Proteomic analyses revealed that age-induced changes in protein abundance differed between EDL and SOL with the largest change being increased mitochondrial respiratory protein content in EDL. To determine how altered mitochondrial proteomics affect function, we measured respiratory capacity in permeabilized SOL and EDL. The increased mitochondrial protein content in aged EDL resulted in reduced complex I respiratory efficiency in addition to increased complex I-derived H2 O2 production. In contrast, SOL maintained mitochondrial quality, but demonstrated reduced respiratory capacity with age. Thus, the decline in mitochondrial quality with age in EDL was associated with slower protein turnover throughout life that may contribute to the greater decline in mitochondrial dysfunction in this muscle. Furthermore, mitochondrial-targeted catalase protected respiratory function with age suggesting a causal role of oxidative stress. Our data clearly indicate divergent effects of age between different skeletal muscles on mitochondrial protein homeostasis and function with the greatest differences related to complex I. These results show the importance of tissue-specific changes in the interaction between dysregulation of respiratory protein expression, oxidative stress, and mitochondrial function with age.
线粒体功能随年龄的变化在不同肌肉类型之间存在差异,而这种差异背后的机制仍不清楚。我们研究了线粒体蛋白质周转速率是否导致了这种差异。使用重标记蛋白质组学,我们测量了年轻和老年小鼠慢肌比目鱼肌(SOL)和快肌趾长伸肌(EDL)中线粒体蛋白质的周转和丰度。我们发现,在两个年龄段,EDL中线粒体蛋白质的寿命都比SOL中的长。蛋白质组学分析表明,年龄诱导的蛋白质丰度变化在EDL和SOL之间有所不同,最大的变化是EDL中线粒体呼吸蛋白含量增加。为了确定线粒体蛋白质组学的改变如何影响功能,我们测量了通透化的SOL和EDL中的呼吸能力。老年EDL中线粒体蛋白质含量的增加除了导致复合体I衍生的H2O2产生增加外,还导致复合体I呼吸效率降低。相比之下,SOL保持了线粒体质量,但随着年龄的增长呼吸能力下降。因此,EDL中线粒体质量随年龄的下降与整个生命过程中较慢的蛋白质周转有关,这可能导致该肌肉中线粒体功能障碍的更大下降。此外,线粒体靶向过氧化氢酶可保护衰老过程中的呼吸功能,表明氧化应激具有因果作用。我们的数据清楚地表明,不同骨骼肌之间年龄对线粒体蛋白质稳态和功能的影响存在差异,最大的差异与复合体I有关。这些结果表明,呼吸蛋白表达失调、氧化应激和线粒体功能随年龄变化之间相互作用的组织特异性变化很重要。