Academy of Scientific & Innovative Research (AcSIR) , CSIR-National Physical Laboratory (CSIR-NPL) Campus , New Delhi 110012 , India.
Advanced Materials & Devices Metrology Division, National Physical Laboratory , Council of Scientific and Industrial Research , New Delhi 110012 , India.
ACS Appl Mater Interfaces. 2019 Dec 26;11(51):47830-47836. doi: 10.1021/acsami.9b12599. Epub 2019 Dec 12.
Compositional tailoring enables fine-tuning of thermoelectric (TE) transport parameters by synergistic modulation of electronic and vibrational properties. In the present work, the aspects of compositionally tailored defects have been explored in ZrNiSn-based half-Heusler (HH) TE materials to achieve high TE performance and cost effectiveness in n-type Hf-free HH alloys. In off-stoichiometric Ni-rich ZrNiSn alloys in a low Ni doping limit ( < 0.1), excess Ni induces defects (Ni/vacancy antisite + interstitials), which tend to cause band structure modification. In addition, the structural similarity of HH and full-Heusler (FH) compounds and formation energetics lead to an intrinsic phase segregation of FH nanoscale precipitates that are coherently dispersed within the ZrNiSn HH matrix as nanoclusters. A consonance was achieved experimentally between these two competing mechanisms for optimal HH composition having both FH precipitates and Ni/vacancy antisite defects in the HH matrix by elevating the sintering temperature up to the solubility limit range of the ZrNiSn system. Defect-mediated optimization of electrical and thermal transport via carrier concentration tuning, energy filtering, and possibly all scale-hierarchical architecture resulted in a maximum ≈ 1.1 at 873 K for the optimized ZrNiSn composition. Our findings highlight the realistic prospect of enhancing TE performance via compositional engineering approach for wide applications of TE.
通过协同调节电子和振动特性,成分剪裁可实现对热电(TE)输运参数的微调。在本工作中,通过对基于 ZrNiSn 的半赫斯勒(HH)TE 材料中的成分剪裁缺陷进行研究,实现了无 Hf 的 n 型 HH 合金在 TE 性能和成本效益方面的优化。在低 Ni 掺杂极限(<0.1)的富 Ni 成分偏离化学计量比的 ZrNiSn 合金中,过量的 Ni 会导致缺陷(Ni/空位反位+间隙原子)的产生,这往往会引起能带结构的改变。此外,HH 和全赫斯勒(FH)化合物的结构相似性和形成能导致 FH 纳米级析出物的固有相分离,这些析出物以纳米团簇的形式在 ZrNiSn HH 基体中均匀分散。通过将烧结温度提高到 ZrNiSn 体系的溶解度极限范围内,实现了这两种竞争机制之间的协同,从而获得了具有 FH 析出物和 HH 基体中 Ni/空位反位缺陷的最佳 HH 组成。通过载流子浓度调谐、能量过滤以及可能的所有尺度层次结构来优化电和热输运的缺陷介导,导致优化后的 ZrNiSn 组成在 873 K 时的最大功率因子 ≈ 1.1。我们的研究结果突出了通过成分工程方法提高 TE 性能的现实前景,这为 TE 的广泛应用提供了可能。