Suppr超能文献

禁食和全身胰岛素信号调节脑蛋白的磷酸化,这些脑蛋白可调节细胞形态并与神经疾病相关。

Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

作者信息

Li Min, Quan Chao, Toth Rachel, Campbell David G, MacKintosh Carol, Wang Hong Yu, Chen Shuai

机构信息

From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China.

the Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom, and.

出版信息

J Biol Chem. 2015 Dec 11;290(50):30030-41. doi: 10.1074/jbc.M115.668103. Epub 2015 Oct 23.

Abstract

Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease.

摘要

糖尿病与认知能力下降密切相关,但其分子机制尚不清楚。我们发现,禁食和外周胰岛素分别促进脑蛋白上特定残基的磷酸化和去磷酸化,这些脑蛋白包括细胞骨架调节因子,如缝隙-罗氏鸟苷三磷酸酶激活蛋白3(srGAP3)和微管亲和力调节蛋白激酶(MARKs),其缺陷或失调与神经疾病有关。禁食激活大脑中的蛋白激酶A(PKA),但不激活蛋白激酶B/Akt信号通路,并且PKA可以使纯化的srGAP3磷酸化。当原代神经元中PKA信号通路被激活时,srGAP3和MARKs的磷酸化增加。敲低PKA可降低srGAP3的磷酸化。此外,一种蛋白激酶A锚定蛋白WAVE1在禁食小鼠的大脑中与srGAP3和PKA形成复合物,以促进PKA对srGAP3的磷酸化。虽然脑细胞有胰岛素受体,但我们的研究结果与大脑内胰岛素信号介导的靶蛋白磷酸化下调不一致。相反,我们的研究结果推断全身胰岛素通过一种未知机制抑制大脑中的PKA或具有相似特异性的蛋白激酶和/或激活一种未知的磷酸酶。srGAP3的Ser(858)被确定为一个关键的调节残基,PKA对其磷酸化增强了srGAP3在细胞中对其底物Rac1的GAP活性,从而抑制了这种GTP酶在细胞骨架调节中的作用。我们的研究结果揭示了将外周胰岛素敏感性与神经元细胞骨架重塑联系起来的新机制,这可能有助于解释糖尿病与阿尔茨海默病等神经疾病的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb6/4705965/37ee305bffd9/zbc0011632980001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验