Suppr超能文献

使用对接和3D-QSAR方法对[5,6]-稠合双环骨架衍生物作为有效的双B-RafV600E/KDR抑制剂的研究。

Studies on [5,6]-Fused Bicyclic Scaffolds Derivatives as Potent Dual B-RafV600E/KDR Inhibitors Using Docking and 3D-QSAR Approaches.

作者信息

Liu Hai-Chun, Tang San-Zhi, Lu Shuai, Ran Ting, Wang Jian, Zhang Yan-Min, Xu An-Yang, Lu Tao, Chen Ya-Dong

机构信息

School of Science, China Pharmaceutical University, Nanjing 211169, China.

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211169, China.

出版信息

Int J Mol Sci. 2015 Oct 15;16(10):24451-74. doi: 10.3390/ijms161024451.

Abstract

Research and development of multi-target inhibitors has attracted increasing attention as anticancer therapeutics. B-RafV600E synergistically works with vascular endothelial growth factor receptor 2 (KDR) to promote the occurrence and progression of cancers, and the development of dual-target drugs simultaneously against these two kinds of kinase may offer a better treatment advantage. In this paper, docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies were performed on a series of dual B-Raf/KDR inhibitors with a novel hinge-binding group, [5,6]-fused bicyclic scaffold. Docking studies revealed optimal binding conformations of these compounds interacting with both B-Raf and KDR. Based on these conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were constructed, and the best CoMFA (q²=0.542, r²=0.989 for B-Raf; q²=0.768, r²=0.991 for KDR) and CoMSIA models (q²=0.519, r²=0.992 for B-Raf; q²=0.849, r²=0.993 for KDR) were generated. Further external validations confirmed their predictability, yielding satisfactory correlation coefficients (r²pred=0.764 (CoMFA), r²pred=0.841 (CoMSIA) for B-Raf, r²pred=0.912 (CoMFA), r²pred=0.846 (CoMSIA) for KDR, respectively). Through graphical analysis and comparison on docking results and 3D-QSAR contour maps, key amino acids that affect the ligand-receptor interactions were identified and structural features influencing the activities were discussed. New potent derivatives were designed, and subjected to preliminary pharmacological evaluation. The study may offer useful references for the modification and development of novel dual B-Raf/KDR inhibitors.

摘要

作为抗癌治疗药物,多靶点抑制剂的研发已引起越来越多的关注。B-RafV600E与血管内皮生长因子受体2(KDR)协同作用,促进癌症的发生和发展,同时开发针对这两种激酶的双靶点药物可能具有更好的治疗优势。本文对一系列具有新型铰链结合基团[5,6]-稠合双环骨架的双B-Raf/KDR抑制剂进行了对接和三维定量构效关系(3D-QSAR)研究。对接研究揭示了这些化合物与B-Raf和KDR相互作用的最佳结合构象。基于这些构象,构建了比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)3D-QSAR模型,并生成了最佳的CoMFA模型(B-Raf的q²=0.542,r²=0.989;KDR的q²=0.768,r²=0.991)和CoMSIA模型(B-Raf的q²=0.519,r²=0.992;KDR的q²=0.849,r²=0.993)。进一步的外部验证证实了它们的可预测性,分别得到了令人满意的相关系数(B-Raf的r²pred=0.764(CoMFA),r²pred=0.841(CoMSIA);KDR的r²pred=0.912(CoMFA),r²pred=0.846(CoMSIA))。通过对对接结果和3D-QSAR等高线图的图形分析和比较,确定了影响配体-受体相互作用的关键氨基酸,并讨论了影响活性的结构特征。设计了新的强效衍生物,并进行了初步的药理评价。该研究可为新型双B-Raf/KDR抑制剂的修饰和开发提供有用的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf9/4632759/37814ab0633f/ijms-16-24451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验