Dai Jisheng, Hu Nan, Xu Weichao, Chang Chunqi
School of Electrical and Information Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
National Mobile Communications Research Laboratory, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
Sensors (Basel). 2015 Oct 16;15(10):26267-80. doi: 10.3390/s151026267.
Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.
稀疏贝叶斯学习(SBL)重新引发了人们对到达方向(DOA)估计问题的兴趣。通常假设SBL中的测量矩阵是精确已知的。然而,由于未知或错误指定的互耦导致的不完美流形,这一假设在实际中可能无效。本文描述了一种用于均匀线性阵列(ULA)的DOA和互耦系数联合估计的改进SBL方法。与现有的仅使用固定先验的方法不同,我们的新方法利用学生t先验的分层形式来更有力地增强未知信号的稀疏性。我们还为期望最大化(EM)算法提供了一种独特的贝叶斯推理,它可以更有效地更新互耦系数。另一个不同之处在于,我们的方法使用额外的奇异值分解(SVD)来降低信号重建过程的计算复杂度以及对测量噪声的敏感度。