Suppr超能文献

使用全向图像和全局外观描述符进行位置估计和局部映射。

Position estimation and local mapping using omnidirectional images and global appearance descriptors.

作者信息

Berenguer Yerai, Payá Luis, Ballesta Mónica, Reinoso Oscar

机构信息

Departamento de Ingeniería de Sistemas y Automática, Miguel Hernández University, Avda. de la Universidad s/n, Elche (Alicante) 03202, Spain.

出版信息

Sensors (Basel). 2015 Oct 16;15(10):26368-95. doi: 10.3390/s151026368.

Abstract

This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

摘要

这项工作提出了一些利用全向图像的全局外观来创建局部地图和估计移动机器人位置的方法。我们使用一个搭载全向视觉系统的机器人。机器人获取的每一幅全向图像仅用基于拉东变换的一个全局外观描述符来描述。在本文所呈现的工作中,考虑了两种不同的可能性。第一种情况,我们假设存在一个预先构建的由从先前已知位置捕获的全向图像组成的地图。在这种情况下,目的是利用机器人从其当前(未知)位置获取的视觉信息,估计地图中离机器人当前位置最近的位置。第二种情况,我们假设我们有一个由全向图像组成的环境模型,但没有关于图像获取位置的信息。在这种情况下,目的是构建一个局部地图并估计机器人在该地图中的位置。考虑到环境中不同物体位置的变化、不同的光照条件和遮挡情况,这两种方法都在不同的数据库(包括虚拟图像和真实图像)上进行了测试。结果表明了这两种方法的有效性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd09/4634508/345adb6323df/sensors-15-26368-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验