Suppr超能文献

用于计算机视觉应用的纳米磁铁的非布尔计算。

Non-Boolean computing with nanomagnets for computer vision applications.

机构信息

Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620, USA.

Department of Computer Science &Engineering, University of South Florida, Tampa, Florida 33620, USA.

出版信息

Nat Nanotechnol. 2016 Feb;11(2):177-83. doi: 10.1038/nnano.2015.245. Epub 2015 Oct 26.

Abstract

The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

摘要

纳米磁性领域最近引起了极大的关注,因为它有可能提供低功耗、高速和高密度的非易失性存储器。现在可以对亚 100nm 磁性结构的尺寸、形状、间距、方向和组成进行设计。这激发了对用于非常规计算范例的纳米磁铁的探索。在这里,我们利用纳米磁性系统的能量最小化性质来解决计算机视觉应用中出现的二次优化问题,这些问题计算成本很高。通过利用纳米磁盘的磁化状态作为涡旋和单畴的状态表示,我们开发了一个磁哈密顿量,并在一个磁系统中实现了它,该系统可以以超过 85%的真阳性率识别给定图像的显著特征。这些结果表明,这种替代计算方法有可能开发出一种磁协处理器,它可以在比传统处理器更少的时钟周期内解决复杂问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验