Department of Mechanical and Nuclear Engineering and ‡Department of Electrical and Computer Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States.
Nano Lett. 2016 Sep 14;16(9):5681-7. doi: 10.1021/acs.nanolett.6b02342. Epub 2016 Aug 31.
We report experimental manipulation of the magnetic states of elliptical cobalt magnetostrictive nanomagnets (with nominal dimensions of ∼340 nm × 270 nm × 12 nm) delineated on bulk 128° Y-cut lithium niobate with acoustic waves (AWs) launched from interdigitated electrodes. Isolated nanomagnets (no dipole interaction with any other nanomagnet) that are initially magnetized with a magnetic field to a single-domain state with the magnetization aligned along the major axis of the ellipse are driven into a vortex state by acoustic waves that modulate the stress anisotropy of these nanomagnets. The nanomagnets remain in the vortex state until they are reset by a strong magnetic field to the initial single-domain state, making the vortex state nonvolatile. This phenomenon is modeled and explained using a micromagnetic framework and could lead to the development of extremely energy efficient magnetization switching methodologies for low-power computing applications.
我们报告了在体 128° Y 切铌酸锂上通过声表面波(AWs)对椭圆钴磁致伸缩纳米磁体(标称尺寸约为 340nm×270nm×12nm)的磁状态进行实验控制。通过从叉指电极发射的声表面波,将孤立的纳米磁体(与任何其他纳米磁体没有偶极相互作用)驱动到涡旋状态,这些纳米磁体在初始时通过磁场被磁化到单畴状态,磁化方向沿椭圆的长轴。这些纳米磁体的各向异性应力被声表面波调制,从而使纳米磁体进入涡旋状态。纳米磁体保持在涡旋状态,直到它们被强磁场重置为初始的单畴状态,从而使涡旋状态成为非易失性的。这种现象可以使用微磁模型进行建模和解释,并可能为低功耗计算应用的极节能磁化切换方法的发展提供思路。