Suppr超能文献

种子发育中期油脂生物合成的延长提高了拟南芥种子中的油脂含量。

Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

作者信息

Kanai Masatake, Mano Shoji, Kondo Maki, Hayashi Makoto, Nishimura Mikio

机构信息

Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan.

Laboratory of Biological Diversity, Department of Evolutionary and Biodiversity, National Institute for Basic Biology, Okazaki, Japan.

出版信息

Plant Biotechnol J. 2016 May;14(5):1241-50. doi: 10.1111/pbi.12489. Epub 2015 Oct 26.

Abstract

Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds.

摘要

植物种子中油脂生物合成的调控已得到广泛研究,并且已设计出生物技术方法来提高种子油含量。种子中油脂和蛋白质的合成呈负相关,但控制这两条途径之间相互作用的机制尚不清楚。在这里,我们确定了控制种子中油脂和蛋白质含量的分子机制。我们利用了过表达WRINKLED1(WRI1)的转基因拟南芥植株,WRI1是一种调控种子油脂生物合成的主要转录因子,以及主要种子贮藏蛋白的敲除突变体。野生型植物中的油脂和蛋白质生物合成分别在种子发育的早期和晚期被依次激活。种子中油脂和蛋白质含量之间的负相关源于这两条途径之间的竞争。在种子发育中期延长WRI1的表达显著提高了种子油含量。这项研究表明,参与油脂或贮藏蛋白生物合成的基因的时序激活决定了拟南芥种子中的油/蛋白比例。这些结果为培育种子含油量高的作物的潜在育种策略提供了新的见解。

相似文献

1
Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
Plant Biotechnol J. 2016 May;14(5):1241-50. doi: 10.1111/pbi.12489. Epub 2015 Oct 26.
2
WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.
Plant Physiol. 2016 May;171(1):179-91. doi: 10.1104/pp.15.01906. Epub 2016 Mar 30.
3
MYB89 Transcription Factor Represses Seed Oil Accumulation.
Plant Physiol. 2017 Feb;173(2):1211-1225. doi: 10.1104/pp.16.01634. Epub 2016 Dec 8.
4
Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1.
Plant Physiol. 2023 Aug 3;192(4):2628-2639. doi: 10.1093/plphys/kiad270.
6
Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis.
Int J Mol Sci. 2022 Mar 11;23(6):3054. doi: 10.3390/ijms23063054.
7
Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp.
PLoS One. 2013 Jul 26;8(7):e68887. doi: 10.1371/journal.pone.0068887. Print 2013.
10
Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus.
Plant Physiol Biochem. 2010 Jan;48(1):9-15. doi: 10.1016/j.plaphy.2009.09.007. Epub 2009 Oct 1.

引用本文的文献

2
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits.
Int J Mol Sci. 2023 Jan 23;24(3):2256. doi: 10.3390/ijms24032256.
3
Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus.
Biotechnol Biofuels Bioprod. 2022 Aug 12;15(1):83. doi: 10.1186/s13068-022-02182-2.
4
Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives.
Plant Commun. 2022 Sep 12;3(5):100328. doi: 10.1016/j.xplc.2022.100328. Epub 2022 Apr 20.
7
Vision, challenges and opportunities for a Plant Cell Atlas.
Elife. 2021 Sep 7;10:e66877. doi: 10.7554/eLife.66877.
8
Molecular Basis of Plant Oil Biosynthesis: Insights Gained From Studying the WRINKLED1 Transcription Factor.
Front Plant Sci. 2020 Feb 4;11:24. doi: 10.3389/fpls.2020.00024. eCollection 2020.
9
Variation in Expression of the HECT E3 Ligase Modulates LEC2 Levels, Seed Size, and Crop Yields in .
Plant Cell. 2019 Oct;31(10):2370-2385. doi: 10.1105/tpc.18.00577. Epub 2019 Aug 22.

本文引用的文献

1
New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus.
BMC Plant Biol. 2015 Mar 27;15:91. doi: 10.1186/s12870-015-0475-8.
2
Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis.
Plant Physiol. 2014 May;165(1):30-6. doi: 10.1104/pp.114.236430. Epub 2014 Apr 2.
4
The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.
Plant Cell Physiol. 2013 Sep;54(9):1431-40. doi: 10.1093/pcp/pct091. Epub 2013 Jun 25.
6
Biochemical pathways in seed oil synthesis.
Curr Opin Plant Biol. 2013 Jun;16(3):358-64. doi: 10.1016/j.pbi.2013.02.015. Epub 2013 Mar 23.
7
Acyl-lipid metabolism.
Arabidopsis Book. 2013;11:e0161. doi: 10.1199/tab.0161. Epub 2013 Jan 29.
8
Seed storage oil catabolism: a story of give and take.
Curr Opin Plant Biol. 2012 Jun;15(3):322-8. doi: 10.1016/j.pbi.2012.03.017. Epub 2012 Apr 18.
10
Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds.
Plant Cell Physiol. 2012 Jan;53(1):28-37. doi: 10.1093/pcp/pcr113. Epub 2011 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验