Suppr超能文献

非水氧化还原液流电池膜中交叉现象的热力学相互作用作为一种描述符

Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes.

作者信息

McCormack Patrick M, Koenig Gary M, Geise Geoffrey M

机构信息

Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, P.O. Box 400741, Charlottesville, Virginia 22904, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Oct 20;13(41):49331-49339. doi: 10.1021/acsami.1c14845. Epub 2021 Oct 5.

Abstract

Grid-scale energy storage is increasingly needed as wind, solar, and other intermittent renewable energy sources become more prevalent. Redox flow batteries (RFBs) are well suited to this application because of the advantages in scalability and modularity over competing technologies. Commercial aqueous flow batteries often have low energy density, but nonaqueous RFBs can offer higher energy density. Nonaqueous RFBs have not been studied as extensively as aqueous RFBs, and the use of organic solvents and organic active materials in nonaqueous RFBs presents unique membrane separator challenges compared to aqueous systems. Specifically, organic active material cross-over, which degrades battery performance, may be affected by membrane/active material thermodynamic interactions in a fundamentally different way than ionic active material cross-over in aqueous RFB membranes. Hansen solubility parameters (HSPs) were used to quantify these interactions and explain differences in organic active material permeability properties. Probe molecules with a more unfavorable HSP-determined enthalpy of mixing with the membrane polymer exhibited lower permeability or cross-over properties. The HSP approach, which accounts for the uncharged polymer backbone and the charged side chain, revealed that interactions between the uncharged organic probe molecule and the hydrophobic polymer backbone were more important for determining permeability or cross-over properties than interactions between the probe molecule and the hydrophilic side chain. This result is significant for nonaqueous RFBs because it suggests a decoupling of ionic conduction expected to predominantly occur in charged polymer regions and cross-over of organic molecules via hydrophobic or uncharged polymer regions. Such decoupling is not expected in aqueous systems where active materials are often polar or ionic and both cross-over and conduction occur predominantly in charged polymer regions. For nonaqueous RFBs, or other membrane applications where selective organic molecule transport is important, HSP analysis can guide the co-design of the polymer separator materials and soluble organic molecules.

摘要

随着风能、太阳能和其他间歇性可再生能源的日益普及,电网规模的储能需求也越来越大。氧化还原液流电池(RFBs)因其在可扩展性和模块化方面优于竞争技术的优势,非常适合这种应用。商用液流水电池通常能量密度较低,但非水系RFBs可以提供更高的能量密度。与水系RFBs相比,非水系RFBs的研究还不够广泛,并且在非水系RFBs中使用有机溶剂和有机活性材料给膜分离器带来了独特的挑战。具体而言,会降低电池性能的有机活性材料穿透,可能受到膜/活性材料热力学相互作用的影响,其方式与水系RFB膜中离子活性材料穿透的方式有根本不同。汉森溶解度参数(HSPs)用于量化这些相互作用,并解释有机活性材料渗透性能的差异。与膜聚合物混合时具有更不利的HSP确定的混合焓的探针分子表现出较低的渗透性或穿透性能。HSP方法考虑了不带电的聚合物主链和带电的侧链,结果表明,对于确定渗透性或穿透性能而言,不带电的有机探针分子与疏水性聚合物主链之间的相互作用比探针分子与亲水性侧链之间的相互作用更为重要。这一结果对非水系RFBs具有重要意义,因为它表明离子传导(预计主要发生在带电聚合物区域)与有机分子通过疏水性或不带电聚合物区域的穿透发生了解耦。在水系系统中,活性材料通常是极性或离子性的,穿透和传导都主要发生在带电聚合物区域,预计不会出现这种解耦。对于非水系RFBs或其他选择性有机分子传输很重要的膜应用,HSP分析可以指导聚合物分离器材料和可溶性有机分子的协同设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验