Qu Alan Subing, Ou Zihao, Savsatli Yavuz, Yao Lehan, Cao Yu, Yu Hao, Montoto Elena C, Hui Jingshu, Li Bo, Soares Julio A N T, Kisley Lydia, Bailey Brian P, Murphy Elizabeth A, Liu Junsheng, Huang Jennifer, Evans Christopher M, Schroeder Charles M, Rodríguez-López Joaquín, Moore Jeffrey S, Chen Qian, Braun Paul V
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Sci Adv. 2025 Sep 5;11(36):eady7716. doi: 10.1126/sciadv.ady7716. Epub 2025 Sep 3.
Redox-active colloids (RACs) represent a novel class of energy carriers that exchange electrical energy upon contact. Understanding contact-mediated electron transfer dynamics in RACs offers insights into physical contact events in colloidal suspensions and enables quantification of electrical energy transport in nonconjugated polymers. Redox-based electron transport was directly observed in monolayers of micron-sized RACs containing ethyl-viologen side groups via fluorescence microscopy through an unexpected nonlinear electrofluorochromism that is quantitatively coupled to the redox state of the colloid. Via imaging studies, using this electrofluorochromism, the apparent charge transfer diffusion coefficient of the RAC was easily determined. The visualization of energy transport within suspensions of redox-active colloids was also demonstrated. Our work elucidates fundamental mechanisms of energy transport in colloidal systems, informs the development of next-generation redox flow batteries, and may inspire new designs of smart active soft matter including conductive polymers for applications ranging from electrochemical sensors and organic electronics to colloidal robotics.
氧化还原活性胶体(RACs)是一类新型的能量载体,它们在接触时会交换电能。了解RACs中接触介导的电子转移动力学,有助于深入了解胶体悬浮液中的物理接触事件,并能够量化非共轭聚合物中的电能传输。通过荧光显微镜,在含有乙基紫精侧基的微米级RACs单层中,通过一种意外的非线性电荧光变色现象直接观察到基于氧化还原的电子传输,这种现象与胶体的氧化还原状态定量相关。通过成像研究,利用这种电荧光变色现象,可以轻松测定RAC的表观电荷转移扩散系数。还展示了氧化还原活性胶体悬浮液中能量传输的可视化。我们的工作阐明了胶体系统中能量传输的基本机制,为下一代氧化还原液流电池的开发提供了信息,并可能激发智能活性软物质的新设计,包括用于从电化学传感器、有机电子学到胶体机器人等各种应用的导电聚合物。