Suppr超能文献

串联Maf识别元件的高分数占有率及其在β-珠蛋白基因远程调控中的作用

High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation.

作者信息

Stees Jared R, Hossain Mir A, Sunose Tomoki, Kudo Yasushi, Pardo Carolina E, Nabilsi Nancy H, Darst Russell P, Poudyal Rosha, Igarashi Kazuhiko, Huang Suming, Kladde Michael P, Bungert Jörg

机构信息

Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.

Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.

出版信息

Mol Cell Biol. 2015 Oct 26;36(2):238-50. doi: 10.1128/MCB.00723-15. Print 2016 Jan 15.

Abstract

Enhancers and promoters assemble protein complexes that ultimately regulate the recruitment and activity of RNA polymerases. Previous work has shown that at least some enhancers form stable protein complexes, leading to the formation of enhanceosomes. We analyzed protein-DNA interactions in the murine β-globin gene locus using the methyltransferase accessibility protocol for individual templates (MAPit). The data show that a tandem Maf recognition element (MARE) in locus control region (LCR) hypersensitive site 2 (HS2) reveals a remarkably high degree of occupancy during differentiation of mouse erythroleukemia cells. Most of the other transcription factor binding sites in LCR HS2 or in the adult β-globin gene promoter regions exhibit low fractional occupancy, suggesting highly dynamic protein-DNA interactions. Targeting of an artificial zinc finger DNA-binding domain (ZF-DBD) to the HS2 tandem MARE caused a reduction in the association of MARE-binding proteins and transcription complexes at LCR HS2 and the adult βmajor-globin gene promoter but did not affect expression of the βminor-globin gene. The data demonstrate that a stable MARE-associated footprint in LCR HS2 is important for the recruitment of transcription complexes to the adult βmajor-globin gene promoter during erythroid cell differentiation.

摘要

增强子和启动子组装蛋白质复合物,最终调控RNA聚合酶的招募和活性。先前的研究表明,至少某些增强子会形成稳定的蛋白质复合物,从而导致增强体的形成。我们使用针对单个模板的甲基转移酶可及性方案(MAPit)分析了小鼠β-珠蛋白基因座中的蛋白质-DNA相互作用。数据显示,基因座控制区(LCR)超敏位点2(HS2)中的串联Maf识别元件(MARE)在小鼠红白血病细胞分化过程中显示出极高的占据率。LCR HS2或成人β-珠蛋白基因启动子区域中的大多数其他转录因子结合位点显示出较低的占有率,表明蛋白质-DNA相互作用高度动态。将人工锌指DNA结合结构域(ZF-DBD)靶向HS2串联MARE会导致MARE结合蛋白与LCR HS2和成人β-珠蛋白基因启动子处的转录复合物之间的结合减少,但不影响β-珠蛋白基因的表达。数据表明,LCR HS2中与MARE相关的稳定足迹对于红系细胞分化过程中转录复合物募集到成人β-珠蛋白基因启动子至关重要。

相似文献

1
High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation.
Mol Cell Biol. 2015 Oct 26;36(2):238-50. doi: 10.1128/MCB.00723-15. Print 2016 Jan 15.
2
Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain.
Nucleic Acids Res. 2014 Apr;42(7):4363-74. doi: 10.1093/nar/gku107. Epub 2014 Feb 4.
4
Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10226-31. doi: 10.1073/pnas.181344198. Epub 2001 Aug 21.
6
LDB1-mediated enhancer looping can be established independent of mediator and cohesin.
Nucleic Acids Res. 2017 Aug 21;45(14):8255-8268. doi: 10.1093/nar/gkx433.
9
Super-enhancer mediated regulation of adult β-globin gene expression: the role of eRNA and Integrator.
Nucleic Acids Res. 2021 Feb 22;49(3):1383-1396. doi: 10.1093/nar/gkab002.

引用本文的文献

2
TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells.
J Biol Chem. 2025 Mar;301(3):108227. doi: 10.1016/j.jbc.2025.108227. Epub 2025 Jan 24.
3
The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes.
Clin Epigenetics. 2021 Jul 8;13(1):138. doi: 10.1186/s13148-021-01126-1.
4
Comprehensive proteomic analysis of murine terminal erythroid differentiation.
Blood Adv. 2020 Apr 14;4(7):1464-1477. doi: 10.1182/bloodadvances.2020001652.

本文引用的文献

1
Genesis of chromatin and transcription dynamics in the origin of species.
Cell. 2015 May 7;161(4):724-36. doi: 10.1016/j.cell.2015.04.033.
2
The core promoter: At the heart of gene expression.
Biochim Biophys Acta. 2015 Aug;1849(8):1116-31. doi: 10.1016/j.bbagrm.2015.04.003. Epub 2015 Apr 28.
3
The selection and function of cell type-specific enhancers.
Nat Rev Mol Cell Biol. 2015 Mar;16(3):144-54. doi: 10.1038/nrm3949. Epub 2015 Feb 4.
5
Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence.
EMBO J. 2015 Mar 12;34(6):759-77. doi: 10.15252/embj.201490542. Epub 2015 Jan 6.
6
What are super-enhancers?
Nat Genet. 2015 Jan;47(1):8-12. doi: 10.1038/ng.3167.
7
Pioneer transcription factors in cell reprogramming.
Genes Dev. 2014 Dec 15;28(24):2679-92. doi: 10.1101/gad.253443.114.
9
Immunogenetics. Chromatin state dynamics during blood formation.
Science. 2014 Aug 22;345(6199):943-9. doi: 10.1126/science.1256271. Epub 2014 Aug 7.
10
Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress.
Nucleic Acids Res. 2014 Jul;42(12):7625-41. doi: 10.1093/nar/gku467. Epub 2014 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验