Suppr超能文献

血浆蛋白对常见实验动物血液中血管靶向载体(VTCs)黏附效率的差异影响

Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

作者信息

Namdee Katawut, Sobczynski Daniel J, Onyskiw Peter J, Eniola-Adefeso Omolola

机构信息

Department of Chemical Engineering, University of Michigan , 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States.

出版信息

Bioconjug Chem. 2015 Dec 16;26(12):2419-28. doi: 10.1021/acs.bioconjchem.5b00474. Epub 2015 Nov 9.

Abstract

Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

摘要

已知血管靶向载体(VTC)与人体血浆相互作用会降低体外靶向黏附效率。然而,血浆蛋白对实验动物体内VTC黏附效率的作用仍不清楚。在此,采用体外血流试验来探究小鼠、兔子和猪的血浆对VTC黏附的影响。猪血浆对VTC黏附表现出强烈的负面作用,而兔子和小鼠血浆未发现显著的血浆效应。VTC上的刷状密度聚乙二醇(PEG)可有效提高微米级而非纳米级VTC在猪血浆中的黏附。总体而言,结果表明与小鼠模型相比,猪模型可作为更好的临床前研究模型,用于预测VTC在人体中的体内功能。这些考量对于各种药品的设计和可靠药物递送系统的开发至关重要。

相似文献

1
Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.
Bioconjug Chem. 2015 Dec 16;26(12):2419-28. doi: 10.1021/acs.bioconjchem.5b00474. Epub 2015 Nov 9.
3
Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.
Acta Biomater. 2017 Jan 15;48:186-194. doi: 10.1016/j.actbio.2016.10.023. Epub 2016 Oct 17.
4
Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.
PLoS One. 2014 Sep 17;9(9):e107408. doi: 10.1371/journal.pone.0107408. eCollection 2014.
6
IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow.
Bioeng Transl Med. 2017 May 22;2(2):180-190. doi: 10.1002/btm2.10064. eCollection 2017 Jun.
7
Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.
Langmuir. 2013 Sep 3;29(35):11127-34. doi: 10.1021/la402182j. Epub 2013 Aug 20.
9
Targeting therapeutics to the vascular wall in atherosclerosis--carrier size matters.
Atherosclerosis. 2011 Aug;217(2):364-70. doi: 10.1016/j.atherosclerosis.2011.04.016. Epub 2011 Apr 22.
10
Exploring deformable particles in vascular-targeted drug delivery: Softer is only sometimes better.
Biomaterials. 2017 Apr;124:169-179. doi: 10.1016/j.biomaterials.2017.02.002. Epub 2017 Feb 4.

引用本文的文献

1
Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery.
Adv Drug Deliv Rev. 2023 Jan;192:114635. doi: 10.1016/j.addr.2022.114635. Epub 2022 Nov 26.
2
Revisiting the outstanding questions in cancer nanomedicine with a future outlook.
Nanoscale Adv. 2021 Dec 22;4(3):634-653. doi: 10.1039/d1na00810b. eCollection 2022 Feb 1.
3
Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development.
Nano Today. 2022 Oct;46:101580. doi: 10.1016/j.nantod.2022.101580. Epub 2022 Aug 4.
5
PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery.
Adv Healthc Mater. 2022 Apr;11(8):e2101536. doi: 10.1002/adhm.202101536. Epub 2022 Jan 27.
7
PEGylation of model drug carriers enhances phagocytosis by primary human neutrophils.
Acta Biomater. 2018 Oct 1;79:283-293. doi: 10.1016/j.actbio.2018.09.001. Epub 2018 Sep 6.
8
IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow.
Bioeng Transl Med. 2017 May 22;2(2):180-190. doi: 10.1002/btm2.10064. eCollection 2017 Jun.
9
Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.
Acta Biomater. 2017 Jan 15;48:186-194. doi: 10.1016/j.actbio.2016.10.023. Epub 2016 Oct 17.
10
Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Nov;8(6):909-926. doi: 10.1002/wnan.1414. Epub 2016 May 19.

本文引用的文献

1
Emergence and Utility of Nonspherical Particles in Biomedicine.
Ind Eng Chem Res. 2015 Apr 29;54(16):4043-4059. doi: 10.1021/ie504452j. Epub 2015 Jan 26.
3
Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery.
Front Chem. 2014 Nov 27;2:108. doi: 10.3389/fchem.2014.00108. eCollection 2014.
4
In vivo evaluation of vascular-targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis.
Atherosclerosis. 2014 Nov;237(1):279-86. doi: 10.1016/j.atherosclerosis.2014.09.025. Epub 2014 Sep 30.
5
Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.
PLoS One. 2014 Sep 17;9(9):e107408. doi: 10.1371/journal.pone.0107408. eCollection 2014.
9
Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.
Langmuir. 2013 Sep 3;29(35):11127-34. doi: 10.1021/la402182j. Epub 2013 Aug 20.
10
The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow.
Biomaterials. 2013 Jul;34(23):5863-71. doi: 10.1016/j.biomaterials.2013.04.011. Epub 2013 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验