Fleischer Candace C, Kumar Umesh, Payne Christine K
School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA.
Biomater Sci. 2013 Sep 1;1(9):975-982. doi: 10.1039/C3BM60121H.
Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for applications.
用于生物应用的纳米颗粒会遇到细胞外蛋白质的复杂混合物。这些蛋白质吸附在纳米颗粒表面会导致“蛋白质冠”的形成,这可能主导纳米颗粒与细胞环境的相互作用。本研究的目的是确定纳米颗粒组成和表面修饰如何影响蛋白质 - 纳米颗粒复合物的细胞结合。我们在有和没有细胞外蛋白质的情况下,研究了一组常用阴离子纳米颗粒的细胞结合:量子点、胶体金纳米颗粒和低密度脂蛋白颗粒。这些实验具有在相同条件下比较不同纳米颗粒的优势。通过结合荧光和暗场显微镜、流式细胞术和光谱学,我们发现这些阴离子纳米颗粒的细胞结合受到血清蛋白的抑制,与纳米颗粒组成或表面修饰无关。我们期望这些结果将有助于设计用于各种应用的纳米颗粒。