Suppr超能文献

皮下环境对相敏原位成型植入物药物释放、降解及微观结构的影响

Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure.

作者信息

Solorio Luis, Exner Agata A

机构信息

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109.

Case Center for Imaging Research, Department of Radiology, Cleveland, Ohio 44106; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.

出版信息

J Pharm Sci. 2015 Dec;104(12):4322-4328. doi: 10.1002/jps.24673. Epub 2015 Oct 27.

Abstract

In situ-forming implants are a promising platform used for the release of therapeutic agents. Significant changes in behavior occur when the implants are used in vivo relative to implants formed in vitro. To understand how the injection site effects implant behavior, poly(lactic-co-glycolic acid) implants were examined after injection in the subcutaneous space of a Sprague-Dawley rat model to determine how the environment altered implant erosion, degradation, swelling, microstructure, and mock drug release. Changes in implant microstructure occurred over time for implants formed in vivo, where it was observed that the porosity was lost over the course of 5 days. Implants formed in vivo had a significantly greater burst release (p < 0.05) relative to implants formed in vitro. However, during the diffusion period of release, implants formed in vitro had a significantly higher daily release (2.1%/day, p < 0.05), which correlated to changes in implant microstructure. Additionally, implants formed in vitro had a two-fold increase in the first-order degradation kinetics relative to the implants formed in vivo. These findings suggest that the changes in implant behavior occur as a result of changes in the implant microstructure induced by the external environment.

摘要

原位形成植入物是一种用于释放治疗剂的很有前景的平台。与体外形成的植入物相比,当植入物用于体内时,其行为会发生显著变化。为了了解注射部位如何影响植入物的行为,在Sprague-Dawley大鼠模型的皮下空间注射聚(乳酸-乙醇酸)植入物后进行检查,以确定环境如何改变植入物的侵蚀、降解、肿胀、微观结构和模拟药物释放。体内形成的植入物的微观结构随时间发生变化,观察到在5天的过程中孔隙率丧失。与体外形成的植入物相比,体内形成的植入物具有显著更高的突释(p < 0.05)。然而,在释放的扩散期,体外形成的植入物具有显著更高的每日释放量(2.1%/天,p < 0.05),这与植入物微观结构的变化相关。此外,体外形成的植入物相对于体内形成的植入物,其一级降解动力学增加了两倍。这些发现表明,植入物行为的变化是由外部环境引起的植入物微观结构变化的结果。

相似文献

2
Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants.
J Control Release. 2016 Dec 10;243:225-231. doi: 10.1016/j.jconrel.2016.10.009. Epub 2016 Oct 11.
3
Effect of implant formation on drug release kinetics of in situ forming implants.
Int J Pharm. 2021 Jan 5;592:120105. doi: 10.1016/j.ijpharm.2020.120105. Epub 2020 Nov 21.
5
Effect of injection site on in situ implant formation and drug release in vivo.
J Control Release. 2010 Nov 1;147(3):350-8. doi: 10.1016/j.jconrel.2010.08.020. Epub 2010 Aug 20.
7
Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
J Control Release. 2019 Sep 10;309:289-301. doi: 10.1016/j.jconrel.2019.07.019. Epub 2019 Jul 16.
8
In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance.
Int J Pharm. 2015;486(1-2):38-51. doi: 10.1016/j.ijpharm.2015.03.026. Epub 2015 Mar 16.
10
Interdependency of protein-release completeness and polymer degradation in PLGA-based implants.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):624-30. doi: 10.1016/j.ejpb.2013.03.031. Epub 2013 Apr 10.

引用本文的文献

1
In vitro and in vivo evaluation of in situ forming polyester implants for the extended release of carvedilol.
Drug Deliv Transl Res. 2025 May;15(5):1707-1718. doi: 10.1007/s13346-024-01706-7. Epub 2024 Sep 23.
2
Mechanistic Computational Modeling of Implantable, Bioresorbable Drug Release Systems.
Adv Mater. 2023 Dec;35(51):e2301698. doi: 10.1002/adma.202301698. Epub 2023 Sep 8.
3
Basic Salt Additives Modulate the Acidic Microenvironment Around In Situ Forming Implants.
Ann Biomed Eng. 2023 May;51(5):966-976. doi: 10.1007/s10439-022-03109-6. Epub 2022 Dec 1.
6
Evolution of drug-eluting biomedical implants for sustained drug delivery.
Eur J Pharm Biopharm. 2021 Feb;159:21-35. doi: 10.1016/j.ejpb.2020.12.005. Epub 2020 Dec 16.
7
In Vitro Tests of FDM 3D-Printed Diclofenac Sodium-Containing Implants.
Molecules. 2020 Dec 13;25(24):5889. doi: 10.3390/molecules25245889.
8
Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery.
Nat Commun. 2019 Sep 20;10(1):4324. doi: 10.1038/s41467-019-12141-5.
9
Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
J Control Release. 2019 Sep 10;309:289-301. doi: 10.1016/j.jconrel.2019.07.019. Epub 2019 Jul 16.
10
Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound.
Ann Biomed Eng. 2017 Dec;45(12):2879-2887. doi: 10.1007/s10439-017-1926-1. Epub 2017 Sep 19.

本文引用的文献

2
Effect of cargo properties on in situ forming implant behavior determined by noninvasive ultrasound imaging.
Drug Deliv Transl Res. 2012 Feb 1;2(1):45-55. doi: 10.1007/s13346-011-0054-y.
3
In vitro-in vivo correlations: tricks and traps.
AAPS J. 2012 Sep;14(3):491-9. doi: 10.1208/s12248-012-9359-0. Epub 2012 May 1.
5
Effect of injection site on in situ implant formation and drug release in vivo.
J Control Release. 2010 Nov 1;147(3):350-8. doi: 10.1016/j.jconrel.2010.08.020. Epub 2010 Aug 20.
6
Development and evaluation of in situ gel-forming system for sustained delivery of insulin.
J Biomater Appl. 2011 Mar;25(7):699-720. doi: 10.1177/0885328209359959. Epub 2010 Mar 5.
8
Noninvasive characterization of in situ forming implants using diagnostic ultrasound.
J Control Release. 2010 Apr 19;143(2):183-90. doi: 10.1016/j.jconrel.2010.01.001. Epub 2010 Jan 11.
9
A comparative study of different release apparatus in generating in vitro-in vivo correlations for extended release formulations.
Eur J Pharm Biopharm. 2009 Sep;73(1):115-20. doi: 10.1016/j.ejpb.2009.04.012. Epub 2009 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验