Suppr超能文献

利用治疗性超声增加原位形成的聚乳酸-羟基乙酸共聚物(PLGA)植入物释放药物的分布

Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound.

作者信息

Manaspon Chawan, Hernandez Christopher, Nittayacharn Pinunta, Jeganathan Selva, Nasongkla Norased, Exner Agata A

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.

Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA.

出版信息

Ann Biomed Eng. 2017 Dec;45(12):2879-2887. doi: 10.1007/s10439-017-1926-1. Epub 2017 Sep 19.

Abstract

One of the challenges in developing sustained-release local drug delivery systems is the limited treatment volume that can be achieved. In this work, we examine the effectiveness of using low frequency, high intensity ultrasound to promote the spatial penetration of drug molecules away from the implant/injection site boundary upon release from injectable, phase inverting poly(lactic acid-co-glycolic acid) (PLGA) implants. Fluorescein-loaded PLGA solutions were injected into poly(acrylamide) phantoms, and the constructs were treated daily for 14 days with ultrasound at 2.2 W/cm for 10 min. The 2D distribution of fluorescein within the phantoms was quantified using fluorescence imaging. Implants receiving ultrasound irradiation showed a 1.7-5.6 fold increase (p < 0.05) in fluorescence intensity and penetration distance, with the maximum increase observed 5 days post-implantation. However, this evidence was not seen when the same experiment was also carried out in phosphate buffer saline (pH 7.4). Results suggest an active role of ultrasound in local molecular transport in the phantom. An increase of fluorescein release and penetration depth in phantoms can be accomplished through brief application of ultrasound. This simple technique offers an opportunity to eventually enhance the therapeutic efficacy and broaden the application of local drug delivery systems.

摘要

开发缓释局部给药系统面临的挑战之一是可实现的治疗体积有限。在这项工作中,我们研究了使用低频、高强度超声促进药物分子从可注射的相转化聚(乳酸-共-乙醇酸)(PLGA)植入物释放后从植入/注射部位边界进行空间渗透的有效性。将负载荧光素的PLGA溶液注入聚丙烯酰胺模型中,并每天用2.2W/cm的超声处理构建体10分钟,持续14天。使用荧光成像对模型内荧光素的二维分布进行定量。接受超声照射的植入物的荧光强度和渗透距离增加了1.7至5.6倍(p<0.05),在植入后5天观察到最大增加。然而,当在磷酸盐缓冲盐水(pH 7.4)中进行相同实验时,未观察到这一现象。结果表明超声在模型中的局部分子运输中发挥了积极作用。通过短暂应用超声可以实现模型中荧光素释放和渗透深度的增加。这种简单的技术为最终提高治疗效果和拓宽局部给药系统的应用提供了机会。

相似文献

1
Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound.
Ann Biomed Eng. 2017 Dec;45(12):2879-2887. doi: 10.1007/s10439-017-1926-1. Epub 2017 Sep 19.
3
Effect of injection site on in situ implant formation and drug release in vivo.
J Control Release. 2010 Nov 1;147(3):350-8. doi: 10.1016/j.jconrel.2010.08.020. Epub 2010 Aug 20.
5
Noninvasive characterization of in situ forming implants using diagnostic ultrasound.
J Control Release. 2010 Apr 19;143(2):183-90. doi: 10.1016/j.jconrel.2010.01.001. Epub 2010 Jan 11.
7
A biodegradable perivascular wrap for controlled, local and directed drug delivery.
J Control Release. 2012 Jul 10;161(1):81-9. doi: 10.1016/j.jconrel.2012.04.029. Epub 2012 Apr 27.
9
Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats.
J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2178-86. doi: 10.1002/jbm.b.32785. Epub 2012 Aug 9.
10
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
J Biomed Nanotechnol. 2011 Feb;7(1):118-20. doi: 10.1166/jbn.2011.1230.

本文引用的文献

1
PLGA implants: How Poloxamer/PEO addition slows down or accelerates polymer degradation and drug release.
J Control Release. 2017 May 10;253:19-29. doi: 10.1016/j.jconrel.2017.03.009. Epub 2017 Mar 9.
2
Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):164-176. doi: 10.1109/TUFFC.2016.2614944.
3
Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants.
J Control Release. 2016 Dec 10;243:225-231. doi: 10.1016/j.jconrel.2016.10.009. Epub 2016 Oct 11.
4
In vitro and in vivo assessment of controlled release and degradation of acoustically responsive scaffolds.
Acta Biomater. 2016 Dec;46:221-233. doi: 10.1016/j.actbio.2016.09.026. Epub 2016 Sep 27.
5
Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications.
J Control Release. 2016 Nov 10;241:144-163. doi: 10.1016/j.jconrel.2016.09.026. Epub 2016 Sep 23.
6
Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme.
Pharm Res. 2016 Dec;33(12):2891-2903. doi: 10.1007/s11095-016-2011-4. Epub 2016 Aug 5.
7
In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants.
Drug Deliv. 2016 Nov;23(9):3279-3284. doi: 10.3109/10717544.2016.1172368. Epub 2016 Apr 18.
9
Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy.
Adv Drug Deliv Rev. 2016 Aug 1;103:144-156. doi: 10.1016/j.addr.2016.02.003. Epub 2016 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验