Suppr超能文献

对天然肾内髓集合管细胞的细胞核组分进行蛋白质组分析。

Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

作者信息

Pickering Christina M, Grady Cameron, Medvar Barbara, Emamian Milad, Sandoval Pablo C, Zhao Yue, Yang Chin-Rang, Jung Hyun Jun, Chou Chung-Lin, Knepper Mark A

机构信息

Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland

出版信息

Physiol Genomics. 2016 Feb;48(2):154-66. doi: 10.1152/physiolgenomics.00090.2015. Epub 2015 Oct 27.

Abstract

The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

摘要

肾脏水排泄的控制部分是通过集合管细胞中对血管加压素作出反应的转录调控来实现的。基于系统生物学的方法来理解肾脏集合管细胞中的转录调控,依赖于对细胞核中存在哪些转录因子和其他调节蛋白的了解。本文的目的是报告对大鼠天然内髓集合管(IMCD)细胞中富含核蛋白的细胞组分进行全面的蛋白质组分析。多维分离程序和最先进的蛋白质质谱分析产生了18GB的光谱数据,使得能够在生化分离的大鼠IMCD细胞的核沉淀(NP)和核提取物(NE)组分中高严格度地鉴定出5048种蛋白质(网址:https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/)。该分析在大鼠基因组编码的1371种转录因子中鉴定出369种转录因子蛋白。该分析为大鼠IMCD细胞公认的蛋白质组增加了1511种蛋白质,现在共有8290种独特的蛋白质。对用血管加压素类似物dDAVP(1 nM,处理30分钟)或其溶剂处理的样品进行分析,发现NP组分中有99种蛋白质,NE组分中有88种蛋白质的光谱计数有显著变化(Fisher精确检验,P < 0.005)。在血管加压素改变的那些蛋白质中,有七种不同的组蛋白,所有这些组蛋白在NP组分中的丰度都降低了,这与血管加压素可能诱导染色质重塑的作用一致。这些结果为未来研究血管加压素介导的肾脏集合管转录调控提供了数据资源。

相似文献

1
Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.
Physiol Genomics. 2016 Feb;48(2):154-66. doi: 10.1152/physiolgenomics.00090.2015. Epub 2015 Oct 27.
2
Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS.
Physiol Genomics. 2010 Feb 4;40(3):167-83. doi: 10.1152/physiolgenomics.00148.2009. Epub 2009 Dec 8.
3
High-throughput identification of IMCD proteins using LC-MS/MS.
Physiol Genomics. 2006 Apr 13;25(2):263-76. doi: 10.1152/physiolgenomics.00214.2005. Epub 2006 Jan 31.
4
Identification of β-catenin-interacting proteins in nuclear fractions of native rat collecting duct cells.
Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F30-F46. doi: 10.1152/ajprenal.00054.2017. Epub 2017 Mar 15.
5
LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat.
Am J Physiol Renal Physiol. 2008 Dec;295(6):F1799-806. doi: 10.1152/ajprenal.90510.2008. Epub 2008 Oct 15.
6
Transcriptional profiling of native inner medullary collecting duct cells from rat kidney.
Physiol Genomics. 2008 Jan 17;32(2):229-53. doi: 10.1152/physiolgenomics.00201.2007. Epub 2007 Oct 23.
8
Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells.
Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1006-20. doi: 10.1152/ajpcell.00260.2012. Epub 2012 Sep 19.
9
Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells.
J Am Soc Nephrol. 2012 Jun;23(6):1008-18. doi: 10.1681/ASN.2011070738. Epub 2012 Mar 22.
10
Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct.
Physiol Genomics. 2018 Sep 1;50(9):669-679. doi: 10.1152/physiolgenomics.00029.2018. Epub 2018 Jun 22.

引用本文的文献

1
Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney.
Am J Physiol Renal Physiol. 2024 Jan 1;326(1):F69-F85. doi: 10.1152/ajprenal.00144.2023. Epub 2023 Oct 19.
2
Identification of a foetal epigenetic compartment in adult human kidney.
Epigenetics. 2022 Mar;17(3):335-355. doi: 10.1080/15592294.2021.1900027. Epub 2021 Mar 30.
3
Phosphoproteomic identification of vasopressin-regulated protein kinases in collecting duct cells.
Br J Pharmacol. 2021 Mar;178(6):1426-1444. doi: 10.1111/bph.15352. Epub 2021 Feb 14.
4
Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A-Dependent Signaling in Kidney.
Mol Pharmacol. 2021 May;99(5):358-369. doi: 10.1124/mol.120.119602. Epub 2020 Apr 3.
5
Optimized GC-MS metabolomics for the analysis of kidney tissue metabolites.
Metabolomics. 2018 May 25;14(6):75. doi: 10.1007/s11306-018-1373-5.
6
Sequence-based searching of custom proteome and transcriptome databases.
Physiol Rep. 2018 Sep;6(18):e13846. doi: 10.14814/phy2.13846.
7
From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology.
Physiol Rev. 2018 Oct 1;98(4):2571-2606. doi: 10.1152/physrev.00057.2017.
8
Epigenomes in Cardiovascular Disease.
Circ Res. 2018 May 25;122(11):1586-1607. doi: 10.1161/CIRCRESAHA.118.311597.
9
Identification of UT-A1- and AQP2-interacting proteins in rat inner medullary collecting duct.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C99-C117. doi: 10.1152/ajpcell.00082.2017. Epub 2017 Oct 18.
10
Identification of β-catenin-interacting proteins in nuclear fractions of native rat collecting duct cells.
Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F30-F46. doi: 10.1152/ajprenal.00054.2017. Epub 2017 Mar 15.

本文引用的文献

1
Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling.
Am J Physiol Cell Physiol. 2015 Dec 15;309(12):C799-812. doi: 10.1152/ajpcell.00214.2015. Epub 2015 Aug 26.
2
Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.
Am J Physiol Cell Physiol. 2015 Dec 15;309(12):C785-98. doi: 10.1152/ajpcell.00213.2015. Epub 2015 Aug 26.
3
Systems biology of diuretic resistance.
J Clin Invest. 2015 May;125(5):1793-5. doi: 10.1172/JCI81505. Epub 2015 Apr 20.
4
Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes.
J Am Soc Nephrol. 2015 Nov;26(11):2669-77. doi: 10.1681/ASN.2014111067. Epub 2015 Mar 27.
6
STRING v10: protein-protein interaction networks, integrated over the tree of life.
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. doi: 10.1093/nar/gku1003. Epub 2014 Oct 28.
7
AHNAK: the giant jack of all trades.
Cell Signal. 2014 Dec;26(12):2683-93. doi: 10.1016/j.cellsig.2014.08.017. Epub 2014 Aug 27.
8
A knowledge base of vasopressin actions in the kidney.
Am J Physiol Renal Physiol. 2014 Sep 15;307(6):F747-55. doi: 10.1152/ajprenal.00012.2014. Epub 2014 Jul 23.
9
Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2.
Kidney Int. 2014 Oct;86(4):757-67. doi: 10.1038/ki.2014.107. Epub 2014 Apr 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验