Suppr超能文献

优化的 GC-MS 代谢组学分析肾脏组织代谢物。

Optimized GC-MS metabolomics for the analysis of kidney tissue metabolites.

机构信息

Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.

出版信息

Metabolomics. 2018 May 25;14(6):75. doi: 10.1007/s11306-018-1373-5.

Abstract

INTRODUCTION

Metabolomics is a promising approach for discovery of relevant biomarkers in cells, tissues, organs, and biofluids for disease identification and prediction. The field has mostly relied on blood-based biofluids (serum, plasma, urine) as non-invasive sources of samples as surrogates of tissue or organ-specific conditions. However, the tissue specificity of metabolites pose challenges in translating blood metabolic profiles to organ-specific pathophysiological changes, and require further downstream analysis of the metabolites.

OBJECTIVES

As part of this project, we aim to develop and optimize an efficient extraction protocol for the analysis of kidney tissue metabolites representative of key primate metabolic pathways.

METHODS

Kidney cortex and medulla tissues of a baboon were homogenized and extracted using eight different extraction protocols including methanol/water, dichloromethane/methanol, pure methanol, pure water, water/methanol/chloroform, methanol/chloroform, methanol/acetonitrile/water, and acetonitrile/isopropanol/water. The extracts were analyzed by a two-dimensional gas chromatography time-of-flight mass-spectrometer (2D GC-ToF-MS) platform after methoximation and silylation.

RESULTS

Our analysis quantified 110 shared metabolites in kidney cortex and medulla tissues from hundreds of metabolites found among the eight different solvent extractions spanning low to high polarities. The results revealed that medulla is metabolically richer compared to the cortex. Dichloromethane and methanol mixture (3:1) yielded highest number of metabolites across both the tissue types. Depending on the metabolites of interest, tissue type, and the biological question, different solvents can be used to extract specific groups of metabolites.

CONCLUSION

This investigation provides insights into selection of extraction solvents for detection of classes of metabolites in renal cortex and medulla, which is fundamentally important for identification of prognostic and diagnostic metabolic kidney biomarkers for future therapeutic applications.

摘要

简介

代谢组学是一种很有前途的方法,可以在细胞、组织、器官和生物体液中发现相关的生物标志物,用于疾病的识别和预测。该领域主要依赖于基于血液的生物体液(血清、血浆、尿液)作为组织或器官特异性条件的替代物,作为非侵入性样本来源。然而,代谢物的组织特异性给将血液代谢谱转化为特定器官的病理生理变化带来了挑战,需要对代谢物进行进一步的下游分析。

目的

作为该项目的一部分,我们旨在开发和优化一种有效的提取方案,用于分析代表关键灵长类代谢途径的肾脏组织代谢物。

方法

对狒狒的肾脏皮质和髓质组织进行匀浆,并使用包括甲醇/水、二氯甲烷/甲醇、纯甲醇、纯水、水/甲醇/氯仿、甲醇/氯仿、甲醇/乙腈/水和乙腈/异丙醇/水在内的八种不同提取方案进行提取。提取后,经甲氧基化和硅烷化处理,用二维气相色谱飞行时间质谱仪(2D GC-ToF-MS)平台进行分析。

结果

我们的分析在八种不同溶剂提取中发现的数百种代谢物中,定量了皮质和髓质组织中 110 种共同的代谢物。结果表明,髓质的代谢物比皮质更丰富。二氯甲烷和甲醇(3:1)混合物在两种组织类型中产生的代谢物数量最多。根据感兴趣的代谢物、组织类型和生物学问题,可以使用不同的溶剂来提取特定组的代谢物。

结论

这项研究为检测肾脏皮质和髓质中特定类别的代谢物选择提取溶剂提供了深入的了解,这对于确定未来治疗应用中具有预后和诊断价值的代谢性肾脏生物标志物具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验