Suppr超能文献

一个保守的MADS盒磷酸化基序调节骨骼肌、心肌和平滑肌细胞的分化及线粒体功能。

A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells.

作者信息

Mughal W, Nguyen L, Pustylnik S, da Silva Rosa S C, Piotrowski S, Chapman D, Du M, Alli N S, Grigull J, Halayko A J, Aliani M, Topham M K, Epand R M, Hatch G M, Pereira T J, Kereliuk S, McDermott J C, Rampitsch C, Dolinsky V W, Gordon J W

机构信息

Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.

The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.

出版信息

Cell Death Dis. 2015 Oct 29;6(10):e1944. doi: 10.1038/cddis.2015.306.

Abstract

Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.

摘要

胎儿发育期间暴露于代谢性疾病会改变细胞分化并扰乱代谢稳态,但肌肉细胞中这一现象的潜在分子调节因子尚未完全明确。为解决这一问题,我们采用了一种计算方法来识别转录因子肌细胞增强因子2(MEF2)家族的协同作用伙伴,MEF2家族是已知的肌肉分化和代谢功能调节因子。我们证明,MEF2和血清反应因子(SRF)协同调节众多肌肉特异性基因的表达,包括微小RNA-133a(miR-133a)。使用串联质谱技术,我们在MEF2和SRF的Mcm1 Agamous Deficiens SRF(MADS)框内鉴定出一个保守的磷酸化基序,该基序可调节miR-133a的表达和线粒体功能以响应脂毒性信号。此外,通过在这个已鉴定的磷酸化基序中表达中和突变来重建MEF2功能,可在脂毒性期间恢复miR-133a的表达和线粒体膜电位。从机制上讲,我们证明miR-133a通过翻译抑制一种称为Nix的线粒体自噬和细胞死亡调节蛋白来调节线粒体功能。最后,我们表明,在胎儿发育期间暴露于妊娠糖尿病的啮齿动物,在成年后会出现肌肉二酰甘油积累,同时伴有胰岛素抵抗、miR-133a降低和Nix表达升高。鉴于miR-133a和Nix在调节线粒体功能以及某些癌症增殖中的多种作用,这一遗传途径的失调可能对胰岛素抵抗、心血管疾病和癌症生物学具有广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a05/5399178/494fbf7052c6/cddis2015306f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验