Liang Xiaodan, Lin Liang, Cao Qingxing, Huang Rui, Wang Yongtian
IEEE Trans Med Imaging. 2016 Mar;35(3):713-27. doi: 10.1109/TMI.2015.2492618. Epub 2015 Oct 26.
This work investigates how to automatically classify Focal Liver Lesions (FLLs) into three specific benign or malignant types in Contrast-Enhanced Ultrasound (CEUS) videos, and aims at providing a computational framework to assist clinicians in FLL diagnosis. The main challenge for this task is that FLLs in CEUS videos often show diverse enhancement patterns at different temporal phases. To handle these diverse patterns, we propose a novel structured model, which detects a number of discriminative Regions of Interest (ROIs) for the FLL and recognize the FLL based on these ROIs. Our model incorporates an ensemble of local classifiers in the attempt to identify different enhancement patterns of ROIs, and in particular, we make the model reconfigurable by introducing switch variables to adaptively select appropriate classifiers during inference. We formulate the model learning as a non-convex optimization problem, and present a principled optimization method to solve it in a dynamic manner: the latent structures (e.g. the selections of local classifiers, and the sizes and locations of ROIs) are iteratively determined along with the parameter learning. Given the updated model parameters in each step, the data-driven inference is also proposed to efficiently determine the latent structures by using the sequential pruning and dynamic programming method. In the experiments, we demonstrate superior performances over the state-of-the-art approaches. We also release hundreds of CEUS FLLs videos used to quantitatively evaluate this work, which to the best of our knowledge forms the largest dataset in the literature. Please find more information at "http://vision.sysu.edu.cn/projects/fllrecog/".
这项工作研究了如何在超声造影(CEUS)视频中将肝脏局灶性病变(FLL)自动分类为三种特定的良性或恶性类型,旨在提供一个计算框架来辅助临床医生进行FLL诊断。这项任务的主要挑战在于,CEUS视频中的FLL在不同的时间阶段通常呈现出多样的增强模式。为了处理这些多样的模式,我们提出了一种新颖的结构化模型,该模型为FLL检测多个有判别力的感兴趣区域(ROI),并基于这些ROI识别FLL。我们的模型集成了一组局部分类器,试图识别ROI的不同增强模式,特别是,我们通过引入开关变量使模型可重新配置,以便在推理过程中自适应地选择合适的分类器。我们将模型学习公式化为一个非凸优化问题,并提出一种有原则的优化方法以动态方式求解:潜在结构(例如局部分类器的选择、ROI的大小和位置)与参数学习一起迭代确定。在每一步给定更新后的模型参数后,还提出了数据驱动的推理方法,通过使用顺序剪枝和动态规划方法有效地确定潜在结构。在实验中,我们展示了优于现有方法的性能。我们还发布了数百个用于定量评估这项工作的CEUS FLL视频,据我们所知,这构成了文献中最大的数据集。请访问“http://vision.sysu.edu.cn/projects/fllrecog/”获取更多信息。