文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能增强肝细胞癌的超声检测:当前应用、挑战与未来方向。

Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

作者信息

Wongsuwan Janthakan, Tubtawee Teeravut, Nirattisaikul Sitang, Danpanichkul Pojsakorn, Cheungpasitporn Wisit, Chaichulee Sitthichok, Kaewdech Apichat

机构信息

Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand.

Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand.

出版信息

BMJ Open Gastroenterol. 2025 Jul 1;12(1):e001832. doi: 10.1136/bmjgast-2025-001832.


DOI:10.1136/bmjgast-2025-001832
PMID:40592728
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12215091/
Abstract

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, with early detection playing a crucial role in improving survival rates. Artificial intelligence (AI), particularly in medical image analysis, has emerged as a potential tool for HCC diagnosis and surveillance. Recent advancements in deep learning-driven medical imaging have demonstrated significant potential in enhancing early HCC detection, particularly in ultrasound (US)-based surveillance. METHOD: This review provides a comprehensive analysis of the current landscape, challenges, and future directions of AI in HCC surveillance, with a specific focus on the application in US imaging. Additionally, it explores AI's transformative potential in clinical practice and its implications for improving patient outcomes. RESULTS: We examine various AI models developed for HCC diagnosis, highlighting their strengths and limitations, with a particular emphasis on deep learning approaches. Among these, convolutional neural networks have shown notable success in detecting and characterising different focal liver lesions on B-mode US often outperforming conventional radiological assessments. Despite these advancements, several challenges hinder AI integration into clinical practice, including data heterogeneity, a lack of standardisation, concerns regarding model interpretability, regulatory constraints, and barriers to real-world clinical adoption. Addressing these issues necessitates the development of large, diverse, and high-quality data sets to enhance the robustness and generalisability of AI models. CONCLUSIONS: Emerging trends in AI for HCC surveillance, such as multimodal integration, explainable AI, and real-time diagnostics, offer promising advancements. These innovations have the potential to significantly improve the accuracy, efficiency, and clinical applicability of AI-driven HCC surveillance, ultimately contributing to enhanced patient outcomes.

摘要

背景:肝细胞癌(HCC)仍然是全球癌症相关死亡的主要原因,早期检测对提高生存率起着关键作用。人工智能(AI),特别是在医学图像分析领域,已成为HCC诊断和监测的潜在工具。深度学习驱动的医学成像的最新进展已显示出在增强早期HCC检测方面的巨大潜力,尤其是在基于超声(US)的监测中。 方法:本综述全面分析了AI在HCC监测中的现状、挑战和未来方向,特别关注其在US成像中的应用。此外,还探讨了AI在临床实践中的变革潜力及其对改善患者预后的影响。 结果:我们研究了为HCC诊断开发的各种AI模型,突出了它们的优势和局限性,特别强调了深度学习方法。其中,卷积神经网络在检测和表征B模式US上的不同肝脏局灶性病变方面取得了显著成功,通常优于传统的放射学评估。尽管有这些进展,但仍有几个挑战阻碍了AI融入临床实践,包括数据异质性、缺乏标准化、对模型可解释性的担忧、监管限制以及实际临床应用的障碍。解决这些问题需要开发大型、多样且高质量的数据集,以增强AI模型的稳健性和通用性。 结论:AI用于HCC监测的新兴趋势,如多模态整合、可解释AI和实时诊断,提供了有前景的进展。这些创新有可能显著提高AI驱动的HCC监测的准确性、效率和临床适用性,最终有助于改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/12215091/173cb5106bd9/bmjgast-12-1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/12215091/a186059d48b2/bmjgast-12-1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/12215091/173cb5106bd9/bmjgast-12-1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/12215091/a186059d48b2/bmjgast-12-1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/12215091/173cb5106bd9/bmjgast-12-1-g002.jpg

相似文献

[1]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[2]
Comparison of AI chatbot predicted and realworld survival outcomes in hepatocellular carcinoma.

Sci Rep. 2025-7-1

[3]
Artificial intelligence in the management of patient-ventilator asynchronies: A scoping review.

Heart Lung. 2025

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[6]
Contrast-enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.

Cochrane Database Syst Rev. 2022-9-2

[7]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[8]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[9]
Computed tomography for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.

Cochrane Database Syst Rev. 2021-10-6

[10]
Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

J Med Internet Res. 2025-6-30

本文引用的文献

[1]
Current and new strategies for hepatocellular carcinoma surveillance.

Gastroenterol Rep (Oxf). 2025-6-6

[2]
Application of artificial intelligence in the diagnosis of hepatocellular carcinoma.

eGastroenterology. 2023-11-30

[3]
Construction of an artificially intelligent model for accurate detection of HCC by integrating clinical, radiological, and peripheral immunological features.

Int J Surg. 2025-4-1

[4]
Contrast-enhanced ultrasound-based AI model for multi-classification of focal liver lesions.

J Hepatol. 2025-1-21

[5]
Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment.

Clin Mol Hepatol. 2025-2

[6]
EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma.

J Hepatol. 2025-2

[7]
Multi-modal large language models in radiology: principles, applications, and potential.

Abdom Radiol (NY). 2025-6

[8]
Trends in Hepatocellular Carcinoma Mortality Rates in the US and Projections Through 2040.

JAMA Netw Open. 2024-11-4

[9]
Liver cancer in 2021: Global Burden of Disease study.

J Hepatol. 2025-5

[10]
Multimodal Large Language Models in Health Care: Applications, Challenges, and Future Outlook.

J Med Internet Res. 2024-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索