Suppr超能文献

水铁矿分支纳米片阵列的可控生长及其向用于光电化学水分解的赤铁矿纳米片阵列的转变

Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.

作者信息

Ji Mei, Cai Jinguang, Ma Yurong, Qi Limin

机构信息

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University , Beijing 100871, China.

出版信息

ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3651-60. doi: 10.1021/acsami.5b08116. Epub 2015 Oct 30.

Abstract

The morphology engineering represents an alternative route toward efficient hematite photoanodes for photoelectrochemical (PEC) water splitting without changing the chemical composition. In this work, a facile and mild solvothermal synthesis of unique ferrihydrite branched nanosheet arrays vertically aligned on FTO substrate was achieved at around 100 °C. The hierarchical branched ferrihydrite nanosheet arrays consisted of tiny branches up to 40 nm in length grown almost vertically on stem nanosheets ∼10 nm in thickness. Moreover, the variation of the morphology of the ferrihydrite nanostructures from bare nanosheet arrays through branched nanosheet arrays to dense branched structures can be readily achieved through the regulation of the reaction time and temperature. The obtained ferrihydrite branched nanosheet arrays can be in situ transformed into α-Fe2O3 nanosheet arrays with small surface protrusions upon annealing at 550 °C. After a simple postgrowth Ti-doping process, the resulting Ti-doped α-Fe2O3 nanosheet arrays showed a good PEC performance for water splitting with a photocurrent density of 1.79 mA/cm(2) at 1.6 V vs RHE under AM 1.5G illumination (100 mW/cm(2)). In contrast, the Ti-doped irregular aggregates of the α-Fe2O3 nanograins transformed from dense ferrihydrite branched structures exhibited a much lower photocurrent density (0.41 mA/cm(2) at 1.6 V vs RHE), demonstrating the important influence of the morphology of α-Fe2O3 photoanodes on the PEC performance.

摘要

形态工程代表了一种在不改变化学成分的情况下制备用于光电化学(PEC)水分解的高效赤铁矿光阳极的替代途径。在这项工作中,通过在约100°C的温度下进行简便温和的溶剂热合成,成功地在FTO基板上垂直排列了独特的水铁矿分支纳米片阵列。分级分支的水铁矿纳米片阵列由长度达40nm的微小分支组成,这些分支几乎垂直生长在厚度约为10nm的茎状纳米片上。此外,通过调节反应时间和温度,可以轻松实现水铁矿纳米结构形态从裸纳米片阵列到分支纳米片阵列再到致密分支结构的变化。所获得的水铁矿分支纳米片阵列在550°C退火后可原位转变为具有小表面突起的α-Fe2O3纳米片阵列。经过简单的生长后Ti掺杂工艺,所得的Ti掺杂α-Fe2O3纳米片阵列在AM 1.5G光照(100mW/cm2)下,相对于RHE在1.6V时表现出良好的PEC水分解性能,光电流密度为1.79mA/cm2。相比之下,由致密水铁矿分支结构转变而来的α-Fe2O3纳米颗粒的Ti掺杂不规则聚集体表现出低得多的光电流密度(相对于RHE在1.6V时为0.41mA/cm2),这表明α-Fe2O3光阳极的形态对PEC性能有重要影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验