Suppr超能文献

通过全原子分子动力学研究组蛋白模拟纳米颗粒对核酸的压缩特性。

Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics.

机构信息

Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States.

出版信息

ACS Nano. 2015 Dec 22;9(12):12374-82. doi: 10.1021/acsnano.5b05684. Epub 2015 Nov 9.

Abstract

The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remains to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large-scale, all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove.

摘要

基于核酸(NA)的纳米技术应用的发展依赖于 DNA 和 RNA 的有效包装。然而,NA-纳米颗粒结合的原子细节仍有待全面表征。在这里,我们研究了纳米颗粒和溶剂性质如何影响 NA 的压缩。我们通过大规模的全原子模拟,研究了配体功能化的金纳米颗粒(NP)与双链 NA 结合的情况,作为 NP 电荷和溶液盐浓度的函数,揭示了 RNA 和 DNA 对阳离子 NP 的不同响应。我们证明,纳米颗粒弯曲 DNA 的能力与 NPs 的电荷和配体冠形状直接相关,其中超过 50%的电荷中和和 NP 配体冠的球形形状确保了 DNA 的压缩。然而,需要 100%电荷中和的 NP 才能像组蛋白八聚体一样有效地弯曲 DNA。对于 0.1 M NaCl 中的 RNA,即使是带最高电荷的纳米颗粒也不能引起弯曲,因为带电荷的配体末端基团在内部结合到 RNA 的大沟中。我们表明,只有通过高电荷纳米颗粒与低盐浓度的组合才能实现 RNA 的压缩。与高电荷 NPs 相互作用后,DNA 通过沟槽宽度和深度的周期性变化而弯曲,而 RNA 通过大沟的扩张而弯曲。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验