Greenswag Anna R, Muok Alise, Li Xiaoxiao, Crane Brian R
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
J Mol Biol. 2015 Dec 4;427(24):3890-907. doi: 10.1016/j.jmb.2015.10.015. Epub 2015 Oct 30.
During bacterial chemotaxis, transmembrane chemoreceptor arrays regulate autophosphorylation of the dimeric histidine kinase CheA. The five domains of CheA (P1-P5) each play a specific role in coupling receptor stimulation to CheA activity. Biochemical and X-ray scattering studies of thermostable CheA from Thermotoga maritima determine that the His-containing substrate domain (P1) is sequestered by interactions that depend upon P1 of the adjacent subunit. Non-hydrolyzable ATP analogs (but not ATP or ADP) release P1 from the protein core (domains P3P4P5) and increase its mobility. Detachment of both P1 domains or removal of one within a dimer increases net autophosphorylation substantially at physiological temperature (55°C). However, nearly all activity is lost without the dimerization domain (P3). The linker length between P1 and P3 dictates intersubunit (trans) versus intrasubunit (cis) autophosphorylation, with the trans reaction requiring a minimum length of 47 residues. A new crystal structure of the most active dimerization-plus-kinase unit (P3P4) reveals trans directing interactions between the tether connecting P3 to P2-P1 and the adjacent ATP-binding (P4) domain. The orientation of P4 relative to P3 in the P3P4 structure supports a planar CheA conformation that is required by membrane array models, and it suggests that the ATP lid of CheA may be poised to interact with receptors and coupling proteins. Collectively, these data suggest that the P1 domains are restrained in the off-state as a result of cross-subunit interactions. Perturbations at the nucleotide-binding pocket increase P1 mobility and access of the substrate His to P4-bound ATP.
在细菌趋化作用过程中,跨膜化学感受器阵列调节二聚体组氨酸激酶CheA的自身磷酸化。CheA的五个结构域(P1 - P5)在将受体刺激与CheA活性偶联的过程中各自发挥特定作用。对嗜热栖热菌中热稳定的CheA进行的生化和X射线散射研究表明,含组氨酸的底物结构域(P1)通过依赖于相邻亚基P1的相互作用而被隔离。不可水解的ATP类似物(而非ATP或ADP)使P1从蛋白质核心(结构域P3P4P5)释放并增加其流动性。在生理温度(55°C)下,两个P1结构域的分离或二聚体内一个P1结构域的去除会显著增加净自身磷酸化。然而,没有二聚化结构域(P3)时,几乎所有活性都会丧失。P1和P3之间的连接子长度决定亚基间(反式)与亚基内(顺式)自身磷酸化,反式反应需要至少47个残基的长度。最具活性的二聚化加激酶单元(P3P4)的新晶体结构揭示了连接P3与P2 - P1的系链与相邻ATP结合(P4)结构域之间的反式导向相互作用。P3P4结构中P4相对于P3的取向支持膜阵列模型所需的平面CheA构象,并且表明CheA的ATP盖子可能准备好与受体和偶联蛋白相互作用。总体而言,这些数据表明,由于亚基间相互作用,P1结构域在非活性状态下受到限制。核苷酸结合口袋处的扰动增加了P1的流动性以及底物组氨酸与P4结合的ATP的接触。