Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003.
Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2218467120. doi: 10.1073/pnas.2218467120. Epub 2023 Jul 31.
Motile bacteria have a chemotaxis system that enables them to sense their environment and direct their swimming toward favorable conditions. Chemotaxis involves a signaling process in which ligand binding to the extracellular domain of the chemoreceptor alters the activity of the histidine kinase, CheA, bound ~300 Å away to the distal cytoplasmic tip of the receptor, to initiate a phosphorylation cascade that controls flagellar rotation. The cytoplasmic domain of the receptor is thought to propagate this signal via changes in dynamics and/or stability, but it is unclear how these changes modulate the kinase activity of CheA. To address this question, we have used hydrogen deuterium exchange mass spectrometry to probe the structure and dynamics of CheA within functional signaling complexes of the aspartate receptor cytoplasmic fragment, CheA, and CheW. Our results reveal that stabilization of the P4 catalytic domain of CheA correlates with kinase activation. Furthermore, differences in activation of the kinase that occur during sensory adaptation depend on receptor destabilization of the P3 dimerization domain of CheA. Finally, hydrogen exchange properties of the P1 domain that bears the phosphorylated histidine identify the dimer interface of P1/P1' in the CheA dimer and support an ordered sequential binding mechanism of catalysis, in which dimeric P1/P1' has productive interactions with P4 only upon nucleotide binding. Thus stabilization/destabilization of domains is a key element of the mechanism of modulating CheA kinase activity in chemotaxis, and may play a role in the control of other kinases.
运动细菌具有趋化性系统,使它们能够感知环境并朝着有利的条件游动。趋化作用涉及一个信号转导过程,其中配体与化学感受器的细胞外结构域结合,改变结合在受体远端细胞质尖端约 300Å 处的组氨酸激酶 CheA 的活性,从而启动控制鞭毛旋转的磷酸化级联反应。受体的细胞质结构域被认为通过动力学和/或稳定性的变化来传播这种信号,但尚不清楚这些变化如何调节 CheA 的激酶活性。为了解决这个问题,我们使用氢氘交换质谱法来探测 CheA 在天冬氨酸受体胞质片段、CheA 和 CheW 的功能性信号复合物中的结构和动力学。我们的结果表明,CheA 的 P4 催化结构域的稳定性与激酶的激活相关。此外,在感觉适应过程中发生的激酶激活差异取决于受体对 CheA 的 P3 二聚化结构域的不稳定。最后,承载磷酸化组氨酸的 P1 结构域的氢交换性质确定了 CheA 二聚体中的 P1/P1'二聚体界面,并支持催化的有序顺序结合机制,其中只有在核苷酸结合时,二聚体 P1/P1'才能与 P4 产生有生产力的相互作用。因此,结构域的稳定/不稳定是调节趋化性中 CheA 激酶活性的机制的关键因素,并且可能在其他激酶的控制中发挥作用。