Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy.
Laboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
Neurobiol Dis. 2016 Jan;85:155-163. doi: 10.1016/j.nbd.2015.10.020. Epub 2015 Oct 29.
Ras homolog enriched in striatum (Rhes) is a small GTP-binding protein that modulates signal transduction at dopamine receptors, and also activates mammalian target of rapamycin complex 1 (mTORC1). Rhes binding to mTORC1 is hypothesized to play a role in motor disorders such as levodopa-induced dyskinesia. Here, we investigate the behavioral and in vivo neurocircuitry changes associated with genetic deletion of Rhes or inhibition of mTORC1 signaling in the mouse model of levodopa-induced dyskinesia. 6-Hydroxydopamine-hemilesioned Rhes knockout mice and wild-type littermates were chronically treated with levodopa. In parallel, 6-hydroxydopamine-hemilesioned naïve mice were chronically treated with levodopa or levodopa plus rapamycin, to block mTORC1 pathway activation. Dyskinetic movements were monitored during levodopa treatment along with motor activity on the rotarod. Finally, dyskinetic mice underwent microdialysis probe implantation in the dopamine-depleted striatum and ipsilateral substantia nigra reticulata, and GABA and glutamate levels were monitored upon acute challenge with levodopa. Both Rhes knockouts and rapamycin-treated mice developed less dyskinesia than controls, although only rapamycin-treated mice fully preserved rotarod performance on levodopa. Levodopa elevated nigral GABA and glutamate in controls but not in Rhes knockouts or rapamycin-treated mice. Levodopa also stimulated striatal glutamate in controls and Rhes knockouts but not in rapamycin-treated mice. We conclude that both genetic deletion of Rhes and pharmacological blockade of mTORC1 significantly attenuate dyskinesia development by reducing the sensitization of striato-nigral medium-sized spiny neurons to levodopa. However, mTORC1 blockade seems to provide a more favorable behavioral outcome and a wider effect on neurochemical correlates of dyskinesia.
纹状体富含 Ras 同源物(Rhes)是一种小 GTP 结合蛋白,可调节多巴胺受体的信号转导,还可激活哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)。Rhes 与 mTORC1 的结合被假设在运动障碍(如左旋多巴诱导的运动障碍)中发挥作用。在这里,我们研究了与 Rhes 基因缺失或 mTORC1 信号通路抑制相关的行为和体内神经回路变化,以建立左旋多巴诱导的运动障碍的小鼠模型。6-羟多巴胺半侧损毁 Rhes 敲除小鼠和野生型同窝小鼠接受慢性左旋多巴治疗。同时,6-羟多巴胺半侧损毁的未治疗小鼠接受慢性左旋多巴或左旋多巴加雷帕霉素治疗,以阻断 mTORC1 通路的激活。在左旋多巴治疗期间监测运动障碍运动,同时在旋转棒上监测运动活动。最后,运动障碍小鼠在多巴胺耗竭纹状体和同侧黑质网状部植入微透析探针,并在急性给予左旋多巴时监测 GABA 和谷氨酸水平。与对照组相比,Rhes 敲除小鼠和雷帕霉素治疗小鼠均表现出较轻的运动障碍,尽管只有雷帕霉素治疗小鼠在左旋多巴治疗时完全保留了旋转棒的性能。左旋多巴升高了对照组黑质 GABA 和谷氨酸,但 Rhes 敲除小鼠或雷帕霉素治疗小鼠则没有。左旋多巴还刺激了对照组和 Rhes 敲除小鼠的纹状体谷氨酸,但雷帕霉素治疗小鼠则没有。我们得出结论,Rhes 基因缺失和 mTORC1 药理学阻断均可通过减少纹状体中型棘突神经元对左旋多巴的敏感性,显著减轻运动障碍的发展。然而,mTORC1 阻断似乎提供了更有利的行为结果,并对运动障碍的神经化学相关性产生了更广泛的影响。