Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan.
J Med Syst. 2016 Jan;40(1):18. doi: 10.1007/s10916-015-0387-z. Epub 2015 Nov 2.
An automatic tongue diagnosis framework is proposed to analyze tongue images taken by smartphones. Different from conventional tongue diagnosis systems, our input tongue images are usually in low resolution and taken under unknown lighting conditions. Consequently, existing tongue diagnosis methods cannot be directly applied to give accurate results.
We use the SVM (support vector machine) to predict the lighting condition and the corresponding color correction matrix according to the color difference of images taken with and without flash. We also modify the state-of-the-art work of fur and fissure detection for tongue images by taking hue information into consideration and adding a denoising step.
Our method is able to correct the color of tongue images under different lighting conditions (e.g. fluorescent, incandescent, and halogen illuminant) and provide a better accuracy in tongue features detection with less processing complexity than the prior work.
In this work, we proposed an automatic tongue diagnosis framework which can be applied to smartphones. Unlike the prior work which can only work in a controlled environment, our system can adapt to different lighting conditions by employing a novel color correction parameter estimation scheme.
提出了一种自动舌诊框架,用于分析智能手机拍摄的舌象。与传统的舌诊系统不同,我们输入的舌象通常分辨率较低,并且在未知的光照条件下拍摄。因此,现有的舌诊方法不能直接应用,无法给出准确的结果。
我们使用支持向量机(SVM)根据有无闪光灯拍摄的图像之间的色差,预测光照条件和相应的颜色校正矩阵。我们还通过考虑色调信息并添加去噪步骤,对现有的舌象纹理检测方法进行了修改。
我们的方法能够校正不同光照条件下的舌象颜色(例如荧光灯、白炽灯和卤素光源),并且与之前的工作相比,在检测舌象特征时具有更高的准确性,同时复杂度更低。
在这项工作中,我们提出了一种可应用于智能手机的自动舌诊框架。与之前只能在受控环境中工作的方法不同,我们的系统可以通过采用新颖的颜色校正参数估计方案来适应不同的光照条件。