Suppr超能文献

学习身体侧倾方向的动态控制。

Learning dynamic control of body roll orientation.

作者信息

Vimal Vivekanand Pandey, Lackner James R, DiZio Paul

机构信息

Ashton Graybiel Spatial Orientation Laboratory, MS 033, Brandeis University, Waltham, MA, 02245-9110, USA.

Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02245-9110, USA.

出版信息

Exp Brain Res. 2016 Feb;234(2):483-92. doi: 10.1007/s00221-015-4469-4. Epub 2015 Nov 2.

Abstract

Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n = 10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system (MARS) device programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick commands up to 2.5 Hz with a 30-ms latency. To make the task extremely difficult, the pendulum constant was set to 600°/s(2). Each subject participated in five blocks of four trials, with a trial ending after a cumulative 100 s of balancing, excluding reset times when a subject lost control. To characterize performance and learning, we used metrics derived from joystick movements, phase portraits (joystick deflections vs MARS position and MARS velocity vs angular position), and stabilogram diffusion functions. We found that as subjects improved their balancing performance, they did so by making fewer destabilizing joystick movements and reducing the number and duration of joystick commands. The control strategy they acquired involved making more persistent short-term joystick movements, waiting longer before making changes to ongoing motion, and only intervening intermittently.

摘要

我们的目标是研究在一个涉及围绕不稳定平衡点(重力垂直方向)进行动态平衡的任务中,在没有腿部反射和肌肉僵硬的情况下,方向控制是如何习得的。受试者(n = 10)坐在一个编程为具有倒立摆动力学的多轴旋转系统(MARS)装置中,使用操纵杆将自己调整到重力垂直方向。MARS由强大的伺服电机驱动,能够忠实地跟随操纵杆指令,频率高达2.5 Hz,延迟为30毫秒。为了使任务极其困难,将摆常数设置为600°/s²。每个受试者参加五个包含四次试验的组块,一次试验在累计平衡100秒后结束,不包括受试者失去控制时的重置时间。为了表征表现和学习情况,我们使用了从操纵杆运动、相图(操纵杆偏转与MARS位置以及MARS速度与角位置)和稳定图扩散函数得出的指标。我们发现,随着受试者提高他们的平衡表现,他们通过减少破坏稳定性的操纵杆运动以及减少操纵杆指令的数量和持续时间来做到这一点。他们获得的控制策略包括进行更持续的短期操纵杆运动,在对正在进行的运动进行改变之前等待更长时间,并且仅进行间歇性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc6/4934175/dcb36d1ef886/nihms781100f1.jpg

相似文献

1
Learning dynamic control of body roll orientation.学习身体侧倾方向的动态控制。
Exp Brain Res. 2016 Feb;234(2):483-92. doi: 10.1007/s00221-015-4469-4. Epub 2015 Nov 2.
2
Learning dynamic control of body yaw orientation.学习身体偏航方向的动态控制。
Exp Brain Res. 2018 May;236(5):1321-1330. doi: 10.1007/s00221-018-5216-4. Epub 2018 Mar 6.
6
Learning and long-term retention of dynamic self-stabilization skills.动态自我稳定技能的学习和长期保持。
Exp Brain Res. 2019 Nov;237(11):2775-2787. doi: 10.1007/s00221-019-05631-x. Epub 2019 Aug 23.

引用本文的文献

5
Learning and long-term retention of dynamic self-stabilization skills.动态自我稳定技能的学习和长期保持。
Exp Brain Res. 2019 Nov;237(11):2775-2787. doi: 10.1007/s00221-019-05631-x. Epub 2019 Aug 23.
7
Learning dynamic control of body yaw orientation.学习身体偏航方向的动态控制。
Exp Brain Res. 2018 May;236(5):1321-1330. doi: 10.1007/s00221-018-5216-4. Epub 2018 Mar 6.

本文引用的文献

3
Dynamic flight stability of a hovering model dragonfly.悬停模型蜻蜓的动态飞行稳定性。
J Theor Biol. 2014 May 7;348:100-12. doi: 10.1016/j.jtbi.2014.01.026. Epub 2014 Jan 28.
5
8
Vestibular system: the many facets of a multimodal sense.前庭系统:一种多模态感觉的多个方面。
Annu Rev Neurosci. 2008;31:125-50. doi: 10.1146/annurev.neuro.31.060407.125555.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验