Ganose Alex M, Savory Christopher N, Scanlon David O
University College London , Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
Diamond Light Source, Ltd. , Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom.
J Phys Chem Lett. 2015 Nov 19;6(22):4594-8. doi: 10.1021/acs.jpclett.5b02177. Epub 2015 Nov 6.
Hybrid halide perovskites have recently emerged as a highly efficient class of light absorbers; however, there are increasing concerns over their long-term stability. Recently, incorporation of SCN(-) has been suggested as a novel route to improving stability without negatively impacting performance. Intriguingly, despite crystallizing in a 2D layered structure, (CH3NH3)2Pb(SCN)2I2 (MAPSI) possesses an ideal band gap of 1.53 eV, close to that of the 3D connected champion hybrid perovskite absorber, CH3NH3PbI3 (MAPI). Here, we identify, using hybrid density functional theory, the origin of the smaller than expected band gap of MAPSI through a detailed comparison with the electronic structure of MAPI. Furthermore, assessment of the MAPSI structure reveals that it is thermodynamically stable with respect to phase separation, a likely source of the increased stability reported in experiment.
混合卤化物钙钛矿最近已成为一类高效的光吸收剂;然而,人们对其长期稳定性的担忧日益增加。最近,有人提出引入SCN(-)是提高稳定性的一种新途径,且不会对性能产生负面影响。有趣的是,尽管(CH3NH3)2Pb(SCN)2I2(MAPSI)以二维层状结构结晶,但其理想带隙为1.53 eV,接近三维连接的最佳混合钙钛矿吸收剂CH3NH3PbI3(MAPI)的带隙。在此,我们使用混合密度泛函理论,通过与MAPI的电子结构进行详细比较,确定了MAPSI带隙小于预期的原因。此外,对MAPSI结构的评估表明,它在相分离方面具有热力学稳定性,这可能是实验中报道的稳定性增加的一个来源。