Beijing Key Laboratory of Energy Security and Clean Utilization, North China Electric Power University, Beijing 102206, China.
Phys Chem Chem Phys. 2019 Oct 2;21(38):21223-21235. doi: 10.1039/c9cp02703c.
The instability of organometal halide perovskites still remains a key obstacle restricting their practical application in gas sensing research. The first step in gas sensing using a semiconductor material is the recognition of a target gas through gas-solid interaction. In the current work, the adsorption mechanisms of MAPbI3-H2O, (MA)2Pb(SCN)2I2-H2O, (MA)2Pb(SCN)2I2-CH3COCH3, (MA)2Pb(SCN)2I2-NO2 and (MA)2Pb(SCN)2I2-O3 have been investigated by large-scale quantum dynamics simulations. The structural changes of the perovskite skeleton, the adsorption energy, and the charge transfer between the semiconductor material and the gas molecules have been analysed. The suitability and effectiveness of quantum dynamics simulations in adsorption mechanism research are firstly validated by comparing the humidity sensing mechanisms of MAPbI3 and (MA)2Pb(SCN)2I2. Different sensing mechanisms of (MA)2Pb(SCN)2I2 to gases with different oxidising properties have been proposed. These sensing mechanisms hopefully lay a foundation for the development of novel perovskite gas sensing materials with enhanced stability, high sensitivity, and high selectivity.
有机金属卤化物钙钛矿的不稳定性仍然是限制其在气体传感研究中实际应用的关键障碍。半导体材料进行气体传感的第一步是通过气固相互作用来识别目标气体。在目前的工作中,通过大规模量子动力学模拟研究了 MAPbI3-H2O、(MA)2Pb(SCN)2I2-H2O、(MA)2Pb(SCN)2I2-CH3COCH3、(MA)2Pb(SCN)2I2-NO2 和 (MA)2Pb(SCN)2I2-O3 的吸附机制。分析了钙钛矿骨架的结构变化、吸附能以及半导体材料与气体分子之间的电荷转移。通过比较 MAPbI3 和 (MA)2Pb(SCN)2I2 的湿度传感机制,首次验证了量子动力学模拟在吸附机制研究中的适用性和有效性。提出了 (MA)2Pb(SCN)2I2 对不同氧化性气体的不同传感机制。这些传感机制有望为开发具有增强稳定性、高灵敏度和高选择性的新型钙钛矿气体传感材料奠定基础。