Santos Karine, Preussner Marco, Heroven Anna Christina, Weber Gert
Structural Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany.
RNA Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany.
Acta Crystallogr F Struct Biol Commun. 2015 Nov;71(Pt 11):1421-8. doi: 10.1107/S2053230X15019202. Epub 2015 Oct 23.
In eukaryotes, the removal of nuclear noncoding sequences (pre-mRNA splicing) is catalyzed by the spliceosome, which consists of five ribonucleoprotein particles (U1, U2, U4, U5 and U6 snRNPs, each with a respective snRNA) and a plethora of protein factors that aid spliceosomal maturation, assembly, activation and disassembly. Recently, the U5 snRNP maturation factor Aar2p from baker's yeast has been characterized structurally and biochemically. Aar2p binds to the RNaseH (RH) and Jab1/MPN domains of the highly conserved U5-specific Prp8p, which forms a framework for the spliceosomal catalytic centre. Thereby, Aar2p sterically excludes Brr2p, a helicase essential for the catalytic activation of the spliceosome, from Prp8p binding. At the same time, Aar2p blocks U4/U6 di-snRNA binding to Prp8p. Aar2p therefore prevents premature spliceosome activation and its functions are regulated by reversible phosphorylation. To date, little is known about the hypothetical human Aar2 (hsAar2) orthologue C20ORF4. This study identifies C20ORF4 (i) as part of the HeLa proteome by Western blotting and (ii) as a true Aar2 orthologue which binds to the RH domain (hsRH) of Prp8 and corroborates an evolutionary link between yeast and human Aar2 function. An elaborate strategy was devised to crystallize hsAar2 in complex with hsRH. The analysis of initial weakly diffracting crystals obtained by in situ proteolysis and homology modelling guided the design of an hsAar2 construct in which an internal loop was replaced by three serines (hsAar2(Δloop)). A complex of hsAar2(Δloop) and hsRH crystallized in space group C2; the crystals diffracted to 2.35 Å resolution and were suitable for structure determination by molecular-replacement approaches. The study presented here suggests a connection between Aar2 and the spliceosome in human cells and paves the way for structural studies of human Aar2.
在真核生物中,核内非编码序列的去除(前体mRNA剪接)由剪接体催化,剪接体由五个核糖核蛋白颗粒(U1、U2、U4、U5和U6小核核糖核蛋白颗粒,每个都有各自的小核RNA)以及众多有助于剪接体成熟、组装、激活和拆卸的蛋白质因子组成。最近,来自面包酵母的U5小核核糖核蛋白颗粒成熟因子Aar2p已在结构和生化方面得到表征。Aar2p与高度保守的U5特异性Prp8p的RNaseH(RH)和Jab1/MPN结构域结合,Prp8p为剪接体催化中心形成一个框架。因此,Aar2p在空间上阻止了对剪接体催化激活至关重要的解旋酶Brr2p与Prp8p结合。同时,Aar2p阻止U4/U6双小核RNA与Prp8p结合。因此,Aar2p可防止剪接体过早激活,其功能受可逆磷酸化调节。迄今为止,对于假定的人类Aar2(hsAar2)同源物C20ORF4知之甚少。本研究通过蛋白质印迹法鉴定C20ORF4(i)为HeLa蛋白质组的一部分,以及(ii)作为与Prp8p的RH结构域(hsRH)结合的真正Aar2同源物,并证实了酵母和人类Aar2功能之间的进化联系。设计了一种精细的策略来使hsAar2与hsRH形成复合物结晶。通过原位蛋白酶解和同源建模获得的初始弱衍射晶体分析指导了hsAar2构建体的设计,其中一个内部环被三个丝氨酸取代(hsAar2(Δloop))。hsAar2(Δloop)和hsRH的复合物在空间群C2中结晶;晶体衍射至2.35 Å分辨率,并适合通过分子置换方法进行结构测定。此处提出的研究表明人类细胞中Aar2与剪接体之间存在联系,并为人类Aar2的结构研究铺平了道路。