Suppr超能文献

调控石墨烯/氮化硼异质结构的热电性能。

Tuning thermoelectric properties of graphene/boron nitride heterostructures.

作者信息

Algharagholy Laith A, Al-Galiby Qusiy, Marhoon Haider A, Sadeghi Hatef, Abduljalil Hayder M, Lambert Colin J

机构信息

College of Computer Science and Mathematics, Al-Qadisiyah University, Diwaniyah, Iraq. Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Quantum Technology Centre, Department of Physics, Lancaster University, LA1 4YB Lancaster, UK. College of Basic Education, Sumer University, Al-Refayee, Thi-Qar, Iraq.

出版信息

Nanotechnology. 2015 Nov 27;26(47):475401. doi: 10.1088/0957-4484/26/47/475401. Epub 2015 Nov 3.

Abstract

Using density functional theory combined with a Green's function scattering approach, we examine the thermoelectric properties of hetero-nanoribbons formed from alternating lengths of graphene and boron nitride. In such structures, the boron nitride acts as a tunnel barrier, which weakly couples states in the graphene, to form mini-bands. In un-doped nanoribbons, the mini bands are symmetrically positioned relative to the Fermi energy and do not enhance thermoelectric performance significantly. In contrast, when the ribbons are doped by electron donating or electron accepting adsorbates, the thermopower S and electronic figure of merit are enhanced and either positive or negative thermopowers can be obtained. In the most favourable case, doping with the electron donor tetrathiafulvalene increases the room-temperature thermopower to -284 μv K(-1) and doping by the electron acceptor tetracyanoethylene increases S to 210 μv K(-1). After including both electron and phonon contributions to the thermal conductance, figures of merit ZT up to of order 0.9 are obtained.

摘要

利用密度泛函理论结合格林函数散射方法,我们研究了由交替长度的石墨烯和氮化硼形成的异质纳米带的热电性质。在这种结构中,氮化硼充当隧道势垒,它与石墨烯中的态弱耦合,形成微带。在未掺杂的纳米带中,微带相对于费米能级对称分布,并且不会显著提高热电性能。相比之下,当纳米带通过供电子或吸电子吸附物进行掺杂时,热电势S和电子品质因数会提高,并且可以获得正或负的热电势。在最有利的情况下,用电子供体四硫富瓦烯掺杂可将室温热电势提高到-284 μv K⁻¹,用电子受体四氰基乙烯掺杂可将S提高到210 μv K⁻¹。在计入电子和声子对热导率的贡献后,可获得高达0.9量级的品质因数ZT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验