Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Bioresour Technol. 2016 Jan;200:565-71. doi: 10.1016/j.biortech.2015.10.084. Epub 2015 Nov 10.
Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88mg/Lh) whereas CC exhibited the best Cd(II) reduction (5.86±0.25mg/Lh) and hydrogen evolution (0.35±0.07m(3)/m(3)d), followed by TS (5.27±0.43mg/Lh and 0.15±0.02m(3)/m(3)d) and NF (4.96±0.48mg/Lh and 0.80±0.07m(3)/m(3)d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production.
生物电化学系统(BES)最初以微生物燃料电池模式运行,用于回收 Cu(II),然后在相同的钛片(TS)、泡沫镍(NF)或碳布(CC)阴极上切换到微生物电解池以还原 Cd(II)。Cu(II)还原在所有材料上都相似(4.79-4.88mg/Lh),而 CC 表现出最好的 Cd(II)还原(5.86±0.25mg/Lh)和析氢(0.35±0.07m(3)/m(3)d),其次是 TS(5.27±0.43mg/Lh 和 0.15±0.02m(3)/m(3)d)和 NF(4.96±0.48mg/Lh 和 0.80±0.07m(3)/m(3)d)。这些值分别是无铜对照的 2.0 和 5.0 倍(TS)、4.2 和 2.0 倍(NF)和 1.8 和 7.0 倍(CC)。这些结果表明,协同阴极电极和原位沉积的铜可随后增强 BES 中的 Cd(II)还原和产氢,为同时高效修复 Cu(II)和 Cd(II)共污染并同时产氢提供了一种替代方法。