Suppr超能文献

在堆叠式生物电化学系统(BESs)中,通过同时产氢从水溶液中沉积和分离 W 和 Mo:重金属 W(VI)/Mo(VI)摩尔比、初始 pH 值和电极材料的影响。

Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

出版信息

J Hazard Mater. 2018 Jul 5;353:348-359. doi: 10.1016/j.jhazmat.2018.04.026. Epub 2018 Apr 16.

Abstract

The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m/m/d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)).

摘要

在由微生物电解池(1#)串联与并联微生物燃料电池(2#)组成的堆叠式生物电化学系统(BES)中,研究了水溶液中 W 和 Mo 的共沉淀和分离以及同时产氢。系统研究了 W/Mo 摩尔比(范围为 0.01mM:1mM 和相反)、初始 pH(1.5 至 4.0)和阴极材料(不锈钢网(SSM)、碳棒(CR)和钛片(TS))对 BES 性能的影响。Mo(VI)的浓度比 W(VI)更能影响两种金属的沉积速率和氢气产生速率。在等摩尔比 W/Mo 为 0.05mM:0.05mM 时,实现了金属的完全回收。金属沉积和氢气产生的速率在酸性 pH 下增加,在 pH 1.5 时最快。金属沉积物的形态和 Mo 的价态与 W/Mo 比和 pH 相关。CR 阴极(2#)与 SSM 阴极(1#)结合,实现了显著的氢气产生速率(0.82±0.04m/m/d),同时 W 和 Mo 的沉积速率分别为 0.049±0.003mmol/L/h 和 0.140±0.004mmol/L/h(1#);0.025±0.001mmol/L/h 和 0.090±0.006mmol/L/h(2#))。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验