Zhang Rui, Yao Dezhong, Valdés-Sosa Pedro A, Li Fali, Li Peiyang, Zhang Tao, Ma Teng, Li Yongjie, Xu Peng
Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
J Neural Eng. 2015 Dec;12(6):066024. doi: 10.1088/1741-2560/12/6/066024. Epub 2015 Nov 3.
Motor imagery-based brain-computer interface (MI-BCI) systems hold promise in motor function rehabilitation and assistance for motor function impaired people. But the ability to operate an MI-BCI varies across subjects, which becomes a substantial problem for practical BCI applications beyond the laboratory.
Several previous studies have demonstrated that individual MI-BCI performance is related to the resting state of brain. In this study, we further investigate offline MI-BCI performance variations through the perspective of resting-state electroencephalography (EEG) network.
Spatial topologies and statistical measures of the network have close relationships with MI classification accuracy. Specifically, mean functional connectivity, node degrees, edge strengths, clustering coefficient, local efficiency and global efficiency are positively correlated with MI classification accuracy, whereas the characteristic path length is negatively correlated with MI classification accuracy. The above results indicate that an efficient background EEG network may facilitate MI-BCI performance. Finally, a multiple linear regression model was adopted to predict subjects' MI classification accuracy based on the efficiency measures of the resting-state EEG network, resulting in a reliable prediction.
This study reveals the network mechanisms of the MI-BCI and may help to find new strategies for improving MI-BCI performance.
基于运动想象的脑机接口(MI-BCI)系统在运动功能康复以及为运动功能受损人群提供辅助方面具有广阔前景。但不同受试者操作MI-BCI的能力存在差异,这对于实验室之外的实际脑机接口应用而言是一个重大问题。
先前的多项研究表明,个体的MI-BCI表现与大脑的静息状态有关。在本研究中,我们从静息态脑电图(EEG)网络的角度进一步探究离线MI-BCI性能的差异。
网络的空间拓扑结构和统计指标与MI分类准确率密切相关。具体而言,平均功能连接性、节点度、边强度、聚类系数、局部效率和全局效率与MI分类准确率呈正相关,而特征路径长度与MI分类准确率呈负相关。上述结果表明,高效的背景脑电网络可能有助于提高MI-BCI性能。最后,采用多元线性回归模型,基于静息态脑电网络的效率指标预测受试者的MI分类准确率,得到了可靠的预测结果。
本研究揭示了MI-BCI的网络机制,可能有助于找到提高MI-BCI性能的新策略。