Wanger Institute for Sustainable Energy Research, Illinois Institute of Technology , Chicago, Illinois 60616, United States.
Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology , Chicago, Illinois 60616, United States.
ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25748-56. doi: 10.1021/acsami.5b07331. Epub 2015 Nov 11.
The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries.
锂硫(Li-S)电池由于其高能量密度,是对现有锂离子电池的一种很好的替代选择。然而,活性材料的利用率低、硫或硫化锂(Li2S)的绝缘性质以及多硫化物在有机液体电解质中的溶解,导致初始容量低和快速性能下降。在此,我们提出了一种简单可行的方法来解决这些问题。这种新方法涉及到在聚维酮(PVP)辅助下,通过合成 Li2S/炭黑(Li2S/CB)核,然后包裹一层氮掺杂碳壳。结合能量过滤透射电子显微镜(EFTEM)元素映射、X 射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)测量,证实了所合成的材料具有 Li2S/CB 核与氮掺杂碳壳的结构(表示为 Li2S/CB@NC)。Li2S/CB@NC 正极材料基于 Li2S 质量,在 0.1 C 时的初始容量高达 1020 mAh/g,在 200 次循环中具有稳定的库仑效率为 99.7%。此外,循环性能显示出每个循环的容量衰减率低至 0.17%。最重要的是,为了进一步了解电池应用中的材料,报道了对循环电池中未暴露于空气的 Li2S 样品进行场发射透射电子显微镜(FETEM)和元素映射测试。结合首次对循环电池进行的 FETEM 和场发射扫描电子显微镜(FESEM)研究,Li2S/CB@NC 正极材料展示了不同倍率下的坚固核壳纳米结构的能力和改进的容量保持能力,表明这里设计的 Li2S/CB@NC 是一种用于高性能锂硫电池的出色系统。