National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy Engineering, North China Electric Power University , Beijing 102206, People's Republic of China.
College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China.
ACS Nano. 2016 Dec 27;10(12):10981-10987. doi: 10.1021/acsnano.6b05696. Epub 2016 Dec 8.
Owing to the high theoretical specific capacity (1166 mAh g), lithium sulfide (LiS) has been considered as a promising cathode material for Li-S batteries. However, the polysulfide dissolution and low electronic conductivity of LiS limit its further application in next-generation Li-S batteries. In this report, a nanoporous LiS@C-Co-N cathode is synthesized by liquid infiltration-evaporation of ultrafine LiS nanoparticles into graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) derived from metal-organic frameworks. The obtained LiS@C-Co-N architecture remarkably immobilizes LiS within the cathode structure through physical and chemical molecular interactions. Owing to the synergistic interactions between C-Co-N and LiS nanoparticles, the LiS@C-Co-N composite delivers a reversible capacity of 1155.3 (99.1% of theoretical value) at the initial cycle and 929.6 mAh g after 300 cycles, with nearly 100% Coulombic efficiency and a capacity fading of 0.06% per cycle. It exhibits excellent rate capacities of 950.6, 898.8, and 604.1 mAh g at 1C, 2C, and 4C, respectively. Such a cathode structure is promising for practical applications in high-performance Li-S batteries.
由于具有较高的理论比容量(1166 mAh g),硫化锂(LiS)被认为是一种很有前途的锂硫电池正极材料。然而,LiS 的多硫化物溶解和低电子电导率限制了其在下一代锂硫电池中的进一步应用。在本报告中,通过将超细微粒 LiS 渗透到由金属有机骨架衍生而来的同时掺杂钴和氮的石墨碳(C-Co-N)中,然后蒸发液体,合成了一种具有纳米孔结构的 LiS@C-Co-N 正极。所得到的 LiS@C-Co-N 结构通过物理和化学分子相互作用将 LiS 固定在正极结构内。由于 C-Co-N 和 LiS 纳米颗粒之间的协同相互作用,LiS@C-Co-N 复合材料在初始循环中表现出 1155.3 mAh g 的可逆容量(理论值的 99.1%),在 300 次循环后仍保持 929.6 mAh g,库仑效率接近 100%,且每个循环的容量衰减率仅为 0.06%。它在 1C、2C 和 4C 时分别表现出 950.6、898.8 和 604.1 mAh g 的优异倍率容量。这种正极结构有望在高性能锂硫电池的实际应用中得到应用。