Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States.
ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25053-60. doi: 10.1021/acsami.5b03398. Epub 2015 Nov 4.
In this work, we demonstrate a general lithium-ion battery electrode fabrication method for colloidal nanoparticles (NPs) using electrophoretic deposition (EPD). Our process is capable of forming robust electrodes from copper sulfide, manganese sulfide, and germanium NPs without the use of additives such as polymeric binders and conductive agents. After EPD, we show two postprocessing treatments ((NH4)2S and inert atmosphere heating) to effectively remove surfactant ligands and create a linked network of particles. The NP films fabricated by this simple process exhibit excellent electrochemical performance as lithium-ion battery electrodes. Additive-free Cu(2-x)S and MnS NP films show well-defined plateaus at ∼1.7 V, demonstrating potential for use as cathode electrodes. Because of the absence of additives in the NP film, this additive-free NP film is an ideal template for ex situ analyses of the particles to track particle morphology changes and deterioration as a result of Li ion cycling. To this end, we perform a size-dependent investigation of Cu(2-x)S NPs and demonstrate that there is no significant relationship between size and capacity when comparing small (3.8 nm), medium (22 nm), and large (75 nm) diameter Cu(2-x)S NPs up to 50 cycles; however, the 75 nm NPs show higher Coulombic efficiency. Ex situ TEM analysis suggests that Cu(2-x)S NPs eventually break into smaller particles (<10 nm), explaining a weak correlation between size and performance. We also report for the first time on additive-free Ge NP films, which show stable capacities for up to 50 cycles at 750 mAh/g.
在这项工作中,我们展示了一种使用电泳沉积(EPD)制备胶体纳米粒子(NPs)的通用锂离子电池电极制造方法。我们的工艺能够在不使用聚合物粘合剂和导电剂等添加剂的情况下,从硫化铜、硫化锰和锗 NPs 中形成坚固的电极。在 EPD 之后,我们展示了两种后处理((NH4)2S 和惰性气氛加热),以有效地去除表面活性剂配体并创建粒子的连接网络。通过这种简单的工艺制备的 NP 薄膜作为锂离子电池电极表现出优异的电化学性能。无添加剂的 Cu(2-x)S 和 MnS NP 薄膜在约 1.7 V 时呈现出明确的平台,表明有作为阴极电极的潜力。由于 NP 薄膜中没有添加剂,因此这种无添加剂的 NP 薄膜是用于对粒子进行原位分析的理想模板,可以跟踪由于锂离子循环而导致的粒子形态变化和劣化。为此,我们对 Cu(2-x)S NPs 进行了尺寸依赖性研究,并证明在比较小(3.8 nm)、中(22 nm)和大(75 nm)直径 Cu(2-x)S NPs 时,尺寸与容量之间没有显著关系,直至 50 个循环;然而,75 nm NPs 的库仑效率更高。原位 TEM 分析表明,Cu(2-x)S NPs 最终会破裂成更小的颗粒(<10 nm),这解释了尺寸与性能之间的弱相关性。我们还首次报道了无添加剂的 Ge NP 薄膜,其在 750 mAh/g 下稳定循环长达 50 次。