Suppr超能文献

通过室温处理制备高导电性Cu2-xS纳米颗粒薄膜,并通过电泳沉积使电导率提高一个数量级。

Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.

作者信息

Otelaja Obafemi O, Ha Don-Hyung, Ly Tiffany, Zhang Haitao, Robinson Richard D

机构信息

School of Electrical and Computer Engineering, Cornell University , Ithaca, New York 14853, United States.

出版信息

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):18911-20. doi: 10.1021/am504785f. Epub 2014 Oct 14.

Abstract

A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼ 10(19) cm(-3), Hall mobilities of ∼ 3 to 4 cm(2) V(-1) s(-1), and electrical conductivities of ∼ 5 to 6 S · cm(-1). Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼ 75 S · cm(-1)) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu(1.94)S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

摘要

本文提出了一种简便的室温方法,用于将胶体硫化铜(Cu2-xS)纳米颗粒组装成高导电薄膜。利用硫化铵通过去除配体来连接纳米颗粒,从而将沉积后的绝缘薄膜转变为高导电薄膜。通过霍尔效应测量、场效应晶体管测量、温度依赖性电导率测量和电容 - 电压测量相结合的方式对处理后的薄膜的电子性质进行了表征,揭示了它们高度掺杂的p型半导体性质。旋涂纳米颗粒薄膜的载流子浓度约为10(19) cm(-3),霍尔迁移率约为3至4 cm(2) V(-1) s(-1),电导率约为5至6 S·cm(-1)。我们的薄膜的空穴迁移率比先前报道的HgTe、InSb、PbS、PbTe和PbSe热处理纳米颗粒薄膜的空穴迁移率高1 - 4个数量级。我们表明,作为纳米颗粒薄膜组装方法的电泳沉积(EPD)比传统的旋涂法能使薄膜电导率提高一个数量级(约75 S·cm(-1)),从而制备出电导率与通过物理沉积方法形成的体相薄膜相当的硫化铜纳米颗粒薄膜。有无去除配体的Cu2-xS薄膜的X射线衍射图谱与硫化铜的Djurleite相(Cu(1.94)S)匹配,表明纳米颗粒在硫化铵处理后保持有限尺寸。所报道的高电导率归因于通过硫化铵处理实现了更好的颗粒间耦合。这种方法为制造用于大面积电子和光电子应用的高导电纳米颗粒组件提供了一种可扩展的室温途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验