Mamidi Ashalatha Sreshty, Arora Prerna, Surolia Avadhesha
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
PLoS One. 2015 Nov 4;10(11):e0141674. doi: 10.1371/journal.pone.0141674. eCollection 2015.
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
药物 - 靶点相互作用背后的生物分子识别由结合亲和力和特异性共同决定。虽然可以对结合效力进行量化,但确定特异性仍然是一项挑战,因为这需要针对具有相同配体数据集的多个靶点的亲和力数据。因此,通过计算技术将靶点空间映射到其互补化学空间以理解相互作用空间是很有必要的。在本研究中,探索了两种顶复门寄生虫中FabD药物靶点的活性位点结构,即恶性疟原虫(PfFabD)和刚地弓形虫(TgFabD),随后进行了一致性对接计算并鉴定出十五种最佳命中化合物,其中大多数是天然产物的衍生物。随后,将机器学习技术应用于六个FabD同源物和六十种配体的分子描述符,以诱导出不同的多元偏最小二乘模型。由各种化学实体映射的FabD生物空间总体上解释了它们的相互作用空间。它还突出了顶复门寄生虫的FabD与宿主的FabD之间的选择性差异。此外,化学计量学模型揭示,PfFabD和TgFabD中的主要化学支架分别为吡咯烷和咪唑,它们与其他有利于先导物设计和优化的功能描述符结合,赋予了靶点特异性并提高了结合亲和力。